Skip to main content
Top
Published in: International Journal of Implant Dentistry 1/2021

Open Access 01-12-2021 | Research

Influence of calcium ion-modified implant surfaces in protein adsorption and implant integration

Authors: Eduardo Anitua, Andreia Cerqueira, Francisco Romero-Gavilán, Iñaki García-Arnáez, Cristina Martinez-Ramos, Seda Ozturan, Mikel Azkargorta, Félix Elortza, Mariló Gurruchaga, Isabel Goñi, Julio Suay, Ricardo Tejero

Published in: International Journal of Implant Dentistry | Issue 1/2021

Login to get access

Abstract

Background

Calcium (Ca) is a well-known element in bone metabolism and blood coagulation. Here, we investigate the link between the protein adsorption pattern and the in vivo responses of surfaces modified with calcium ions (Ca-ion) as compared to standard titanium implant surfaces (control). We used LC–MS/MS to identify the proteins adhered to the surfaces after incubation with human serum and performed bilateral surgeries in the medial section of the femoral condyles of 18 New Zealand white rabbits to test osseointegration at 2 and 8 weeks post-implantation (n=9).

Results

Ca-ion surfaces adsorbed 181.42 times more FA10 and 3.85 times less FA12 (p<0.001), which are factors of the common and the intrinsic coagulation pathways respectively. We also detected differences in A1AT, PLMN, FA12, KNG1, HEP2, LYSC, PIP, SAMP, VTNC, SAA4, and CFAH (p<0.01). At 2 and 8 weeks post-implantation, the mean bone implant contact (BIC) with Ca-ion surfaces was respectively 1.52 and 1.25 times higher, and the mean bone volume density (BVD) was respectively 1.35 and 1.13 times higher. Differences were statistically significant for BIC at 2 and 8 weeks and for BVD at 2 weeks (p<0.05).

Conclusions

The strong thrombogenic protein adsorption pattern at Ca-ion surfaces correlated with significantly higher levels of implant osseointegration. More effective implant surfaces combined with smaller implants enable less invasive surgeries, shorter healing times, and overall lower intervention costs, especially in cases of low quantity or quality of bone.
Appendix
Available only for authorised users
Literature
1.
go back to reference Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Reports. 2004;47:49–121.CrossRef Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Reports. 2004;47:49–121.CrossRef
2.
go back to reference Tejero R, Anitua E, Orive G. Toward the biomimetic implant surface: biopolymers on titanium-based implants for bone regeneration. Prog Polym Sci. 2014;39:1406–47.CrossRef Tejero R, Anitua E, Orive G. Toward the biomimetic implant surface: biopolymers on titanium-based implants for bone regeneration. Prog Polym Sci. 2014;39:1406–47.CrossRef
3.
go back to reference Sul YT, Johansson C, Albrektsson T. A novel in vivo method for quantifying the interfacial biochemical bond strength of bone implants. J R Soc Interface. 2010;7:81–90.PubMedCrossRef Sul YT, Johansson C, Albrektsson T. A novel in vivo method for quantifying the interfacial biochemical bond strength of bone implants. J R Soc Interface. 2010;7:81–90.PubMedCrossRef
4.
go back to reference Anitua E, Prado R, Orive G, Tejero R. Effects of calcium-modified titanium implant surfaces on platelet activation, clot formation, and osseointegration. J Biomed Mater Res A. 2015;103:969–80.PubMedCrossRef Anitua E, Prado R, Orive G, Tejero R. Effects of calcium-modified titanium implant surfaces on platelet activation, clot formation, and osseointegration. J Biomed Mater Res A. 2015;103:969–80.PubMedCrossRef
5.
go back to reference Hirsh SL, McKenzie DR, Nosworthy NJ, Denman JA, Sezerman OU, Bilek MMM. The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surfaces B Biointerfaces. 2013;103:395–404.PubMedCrossRef Hirsh SL, McKenzie DR, Nosworthy NJ, Denman JA, Sezerman OU, Bilek MMM. The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surfaces B Biointerfaces. 2013;103:395–404.PubMedCrossRef
6.
go back to reference Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.PubMedCrossRef Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.PubMedCrossRef
7.
go back to reference O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo KWH. The roles of ions on bone regeneration. 23. Drug Discov Today. 2018;23:879–90.PubMedCrossRef O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo KWH. The roles of ions on bone regeneration. 23. Drug Discov Today. 2018;23:879–90.PubMedCrossRef
10.
go back to reference Anitua E, Tejero R, Alkhraisat MH, Orive G. Platelet-rich plasma to improve the bio-functionality of biomaterials. BioDrugs. 2012;27:97–111.CrossRef Anitua E, Tejero R, Alkhraisat MH, Orive G. Platelet-rich plasma to improve the bio-functionality of biomaterials. BioDrugs. 2012;27:97–111.CrossRef
11.
go back to reference Chen Z, Klein T, Murray RZ, Crawford R, Chang J, Wu C, et al. Osteoimmunomodulation for the development of advanced bone biomaterials. Materials Today. 2016;19:304–21.CrossRef Chen Z, Klein T, Murray RZ, Crawford R, Chang J, Wu C, et al. Osteoimmunomodulation for the development of advanced bone biomaterials. Materials Today. 2016;19:304–21.CrossRef
12.
go back to reference Shiu HT, Goss B, Lutton C, Crawford R, Xiao Y. Formation of blood clot on biomaterial implants influences bone healing. Tissue Eng Part B Rev. 2014;20:697–712.PubMedCrossRef Shiu HT, Goss B, Lutton C, Crawford R, Xiao Y. Formation of blood clot on biomaterial implants influences bone healing. Tissue Eng Part B Rev. 2014;20:697–712.PubMedCrossRef
14.
go back to reference Araújo-Gomes N, Romero-Gavilán F, García-Arnáez I, Martínez-Ramos C, Sánchez-Pérez AM, Azkargorta M, et al. Osseointegration mechanisms: a proteomic approach. J Biol Inorg Chem. 2018;23:459–70.PubMedCrossRef Araújo-Gomes N, Romero-Gavilán F, García-Arnáez I, Martínez-Ramos C, Sánchez-Pérez AM, Azkargorta M, et al. Osseointegration mechanisms: a proteomic approach. J Biol Inorg Chem. 2018;23:459–70.PubMedCrossRef
15.
go back to reference Cerqueira A, Romero-Gavilán F, García-Arnáez I, Martinez-Ramos C, Ozturan S, Iloro I, et al. Bioactive zinc-doped sol-gel coating modulates protein adsorption patterns and in vitro cell responses. Mater Sci Eng C. 2021;121:111839.CrossRef Cerqueira A, Romero-Gavilán F, García-Arnáez I, Martinez-Ramos C, Ozturan S, Iloro I, et al. Bioactive zinc-doped sol-gel coating modulates protein adsorption patterns and in vitro cell responses. Mater Sci Eng C. 2021;121:111839.CrossRef
16.
go back to reference Cerqueira A, Romero-Gavilán F, Araújo-Gomes N, García-Arnáez I, Martinez-Ramos C, Ozturan S, et al. A possible use of melatonin in the dental field: protein adsorption and in vitro cell response on coated titanium. Mater Sci Eng C. 2020;116:111262.CrossRef Cerqueira A, Romero-Gavilán F, Araújo-Gomes N, García-Arnáez I, Martinez-Ramos C, Ozturan S, et al. A possible use of melatonin in the dental field: protein adsorption and in vitro cell response on coated titanium. Mater Sci Eng C. 2020;116:111262.CrossRef
17.
go back to reference Romero-Gavilan F, Sánchez-Pérez AM, Araújo-Gomes N, Azkargorta M, Iloro I, Elortza F, et al. Proteomic analysis of silica hybrid sol-gel coatings: a potential tool for predicting the biocompatibility of implants in vivo. Biofouling. 2017;33:676–89.PubMedCrossRef Romero-Gavilan F, Sánchez-Pérez AM, Araújo-Gomes N, Azkargorta M, Iloro I, Elortza F, et al. Proteomic analysis of silica hybrid sol-gel coatings: a potential tool for predicting the biocompatibility of implants in vivo. Biofouling. 2017;33:676–89.PubMedCrossRef
18.
go back to reference Araújo-Gomes N, Romero-Gavilán F, Zhang Y, Martinez-Ramos C, Elortza F, Azkargorta M, et al. Complement proteins regulating macrophage polarisation on biomaterials. Colloids Surfaces B Biointerfaces. 2019;181:125–33.PubMedCrossRef Araújo-Gomes N, Romero-Gavilán F, Zhang Y, Martinez-Ramos C, Elortza F, Azkargorta M, et al. Complement proteins regulating macrophage polarisation on biomaterials. Colloids Surfaces B Biointerfaces. 2019;181:125–33.PubMedCrossRef
19.
go back to reference Castañeda S, Largo R, Calvo E, Rodríguez-Salvanés F, Marcos ME, Díaz-Curiel M, et al. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skeletal Radiol. 2006;35:34–41.PubMedCrossRef Castañeda S, Largo R, Calvo E, Rodríguez-Salvanés F, Marcos ME, Díaz-Curiel M, et al. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skeletal Radiol. 2006;35:34–41.PubMedCrossRef
20.
go back to reference Wang X, Mabrey JD, Agrawal CM. An interspecies comparison of bone fracture properties. Biomed Mater Eng. 1998;8:1–9.PubMed Wang X, Mabrey JD, Agrawal CM. An interspecies comparison of bone fracture properties. Biomed Mater Eng. 1998;8:1–9.PubMed
21.
go back to reference Dahlin C, JC. Osseointegration of Implants. In: Nevins M, GW, editors. Osteology guidelines for oral and maxillofacial regeneration. London: Quintessence Publishing Co Ltd; 2011. p. 103–21. Dahlin C, JC. Osseointegration of Implants. In: Nevins M, GW, editors. Osteology guidelines for oral and maxillofacial regeneration. London: Quintessence Publishing Co Ltd; 2011. p. 103–21.
22.
go back to reference Romero-Gavilán F, Gomes NC, Ródenas J, Sánchez A, Azkargorta M, Iloro I, et al. Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants. Biofouling. 2017;33:98–111.PubMedCrossRef Romero-Gavilán F, Gomes NC, Ródenas J, Sánchez A, Azkargorta M, Iloro I, et al. Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants. Biofouling. 2017;33:98–111.PubMedCrossRef
23.
go back to reference Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.PubMedCrossRef Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.PubMedCrossRef
24.
go back to reference Joshy KS, Snigdha S, TS. Plasma-modified polymeric materials for scaffolding of bone tissue engineering. In: Thomas S, Mozetic M, Cvelbar U, Spatenka P, PJ, editors. Non-thermal plasma technology for polymeric materials. Amsterdam: Elsevier; 2019. p. 439–58.CrossRef Joshy KS, Snigdha S, TS. Plasma-modified polymeric materials for scaffolding of bone tissue engineering. In: Thomas S, Mozetic M, Cvelbar U, Spatenka P, PJ, editors. Non-thermal plasma technology for polymeric materials. Amsterdam: Elsevier; 2019. p. 439–58.CrossRef
25.
go back to reference Tejero R, Rossbach P, Keller B, Anitua E, Reviakine I. Time-of-flight secondary ion mass spectrometry with principal component analysis of titania-blood plasma interfaces. Langmuir. 2013;29:902–12.PubMedCrossRef Tejero R, Rossbach P, Keller B, Anitua E, Reviakine I. Time-of-flight secondary ion mass spectrometry with principal component analysis of titania-blood plasma interfaces. Langmuir. 2013;29:902–12.PubMedCrossRef
26.
go back to reference Anitua E, Piñas L, Murias A, Prado R, Tejero R. Effects of calcium ions on titanium surfaces for bone regeneration. Colloids Surf B Biointerfaces. 2015;130:173–81.PubMedCrossRef Anitua E, Piñas L, Murias A, Prado R, Tejero R. Effects of calcium ions on titanium surfaces for bone regeneration. Colloids Surf B Biointerfaces. 2015;130:173–81.PubMedCrossRef
27.
go back to reference Tengvall P. Proteins at titanium interfaces. In: Brunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine. Berlin: Springer-Verlag; 2001. p. 458–83. Tengvall P. Proteins at titanium interfaces. In: Brunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine. Berlin: Springer-Verlag; 2001. p. 458–83.
28.
go back to reference Kopf BS, Ruch S, Berner S, Spencer ND, Maniura-Weber K. The role of nanostructures and hydrophilicity in osseointegration: in-vitro protein-adsorption and blood-interaction studies. J Biomed Mater Res A. 2015;103:2661–72.PubMedCrossRef Kopf BS, Ruch S, Berner S, Spencer ND, Maniura-Weber K. The role of nanostructures and hydrophilicity in osseointegration: in-vitro protein-adsorption and blood-interaction studies. J Biomed Mater Res A. 2015;103:2661–72.PubMedCrossRef
29.
go back to reference Minelli C, Kikuta A, Tsud N, Ball MD, Yamamoto A. A micro-fluidic study of whole blood behaviour on PMMA topographical nanostructures. J Nanobiotechnology. 2008;6:3.PubMedPubMedCentralCrossRef Minelli C, Kikuta A, Tsud N, Ball MD, Yamamoto A. A micro-fluidic study of whole blood behaviour on PMMA topographical nanostructures. J Nanobiotechnology. 2008;6:3.PubMedPubMedCentralCrossRef
30.
go back to reference Sutherland DS, Broberg M, Nygren H, Kasemo B. Influence of nanoscale surface topography and chemistry on the functional behaviour of an adsorbed model macromolecule. Macromol Biosci. 2001;1:270–3.CrossRef Sutherland DS, Broberg M, Nygren H, Kasemo B. Influence of nanoscale surface topography and chemistry on the functional behaviour of an adsorbed model macromolecule. Macromol Biosci. 2001;1:270–3.CrossRef
31.
go back to reference Anitua E, Tejero R, Zalduendo MM, Orive G. Plasma rich in growth factors (PRGF-Endoret) promotes bone tissue regeneration by stimulating proliferation, migration and autocrine secretion on primary human osteoblasts. J Periodontol. 2013;84(8):1180–90.PubMedCrossRef Anitua E, Tejero R, Zalduendo MM, Orive G. Plasma rich in growth factors (PRGF-Endoret) promotes bone tissue regeneration by stimulating proliferation, migration and autocrine secretion on primary human osteoblasts. J Periodontol. 2013;84(8):1180–90.PubMedCrossRef
32.
go back to reference Sánchez-Ilárduya MB, Trouche E, Tejero R, Orive G, Reviakine I, Anitua E. Time-dependent release of growth factors from implant surfaces treated with plasma rich in growth factors. J Biomed Mater Res A. 2013;101:1478–88.PubMedCrossRef Sánchez-Ilárduya MB, Trouche E, Tejero R, Orive G, Reviakine I, Anitua E. Time-dependent release of growth factors from implant surfaces treated with plasma rich in growth factors. J Biomed Mater Res A. 2013;101:1478–88.PubMedCrossRef
33.
go back to reference Hong J, Andersson J, Ekdahl KN, Elgue G, Axén N, Larsson R, et al. Titanium is a highly thrombogenic biomaterial: possible implications for osteogenesis. Thromb Haemost. 1999;82:58–64.PubMedCrossRef Hong J, Andersson J, Ekdahl KN, Elgue G, Axén N, Larsson R, et al. Titanium is a highly thrombogenic biomaterial: possible implications for osteogenesis. Thromb Haemost. 1999;82:58–64.PubMedCrossRef
34.
go back to reference Rompen E, Domken O, Degidi M, Pontes AEF, Piattelli A. The effect of material characteristics, of surface topography and of implant components and connections on soft tissue integration: a literature review. Clin Oral Implants Res. 2006;17:55–67.PubMedCrossRef Rompen E, Domken O, Degidi M, Pontes AEF, Piattelli A. The effect of material characteristics, of surface topography and of implant components and connections on soft tissue integration: a literature review. Clin Oral Implants Res. 2006;17:55–67.PubMedCrossRef
35.
go back to reference Hong J, Azens A, Ekdahl KN, Granqvist CG, Nilsson B. Material-specific thrombin generation following contact between metal surfaces and whole blood. Biomaterials. 2005;26:1397–403.PubMedCrossRef Hong J, Azens A, Ekdahl KN, Granqvist CG, Nilsson B. Material-specific thrombin generation following contact between metal surfaces and whole blood. Biomaterials. 2005;26:1397–403.PubMedCrossRef
36.
go back to reference Walivaara B, Aronsson BO, Rodahl M, Lausmaa J, Tengvall P. Titanium with different oxides: in vitro studies of protein adsorption and contact activation. Biomaterials. 1994;15:827–34.PubMedCrossRef Walivaara B, Aronsson BO, Rodahl M, Lausmaa J, Tengvall P. Titanium with different oxides: in vitro studies of protein adsorption and contact activation. Biomaterials. 1994;15:827–34.PubMedCrossRef
37.
go back to reference Costa-Neto CM, Dillenburg-Pilla P, Heinrich TA, Parreiras-e-Silva LT, Pereira MGAG, Reis RI, et al. Participation of kallikrein-kinin system in different pathologies. Int Immunopharmacol. 2008;8:135–42.PubMedCrossRef Costa-Neto CM, Dillenburg-Pilla P, Heinrich TA, Parreiras-e-Silva LT, Pereira MGAG, Reis RI, et al. Participation of kallikrein-kinin system in different pathologies. Int Immunopharmacol. 2008;8:135–42.PubMedCrossRef
38.
go back to reference da Costa PLN, Sirois P, Tannock IF, Chammas R. The role of kinin receptors in cancer and therapeutic opportunities. Cancer Lett. 2014;345:27–38.PubMedCrossRef da Costa PLN, Sirois P, Tannock IF, Chammas R. The role of kinin receptors in cancer and therapeutic opportunities. Cancer Lett. 2014;345:27–38.PubMedCrossRef
39.
go back to reference Gruber R, Karreth F, Kandler B, Fuerst G, Rot A, Fischer MB, et al. Platelet-released supernatants increase migration and proliferation, and decrease osteogenic differentiation of bone marrow-derived mesenchymal progenitor cells under in vitro conditions. Platelets. 2004;15:29–35.PubMedCrossRef Gruber R, Karreth F, Kandler B, Fuerst G, Rot A, Fischer MB, et al. Platelet-released supernatants increase migration and proliferation, and decrease osteogenic differentiation of bone marrow-derived mesenchymal progenitor cells under in vitro conditions. Platelets. 2004;15:29–35.PubMedCrossRef
40.
go back to reference Nakamura S, Matsumoto T, Sasaki J-I, Egusa H, Lee KY, Nakano T, et al. Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Eng Part A. 2010;16:2467–73.PubMedCrossRef Nakamura S, Matsumoto T, Sasaki J-I, Egusa H, Lee KY, Nakano T, et al. Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Eng Part A. 2010;16:2467–73.PubMedCrossRef
41.
go back to reference Anitua E, Tejero R, Pacha-Olivenza MÁ, Fernández-Calderón MC, Delgado-Rastrollo M, Zalduendo MM, et al. Balancing microbial and mammalian cell functions on calcium ion-modified implant surfaces. J Biomed Mater Res - Part B Appl Biomater. 2017;106:421–32.CrossRef Anitua E, Tejero R, Pacha-Olivenza MÁ, Fernández-Calderón MC, Delgado-Rastrollo M, Zalduendo MM, et al. Balancing microbial and mammalian cell functions on calcium ion-modified implant surfaces. J Biomed Mater Res - Part B Appl Biomater. 2017;106:421–32.CrossRef
42.
go back to reference Bottazzi B, Inforzato A, Messa M, Barbagallo M, Magrini E, Garlanda C, et al. The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodeling. J Hepatol. 2016;64:1416–27.PubMedPubMedCentralCrossRef Bottazzi B, Inforzato A, Messa M, Barbagallo M, Magrini E, Garlanda C, et al. The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodeling. J Hepatol. 2016;64:1416–27.PubMedPubMedCentralCrossRef
Metadata
Title
Influence of calcium ion-modified implant surfaces in protein adsorption and implant integration
Authors
Eduardo Anitua
Andreia Cerqueira
Francisco Romero-Gavilán
Iñaki García-Arnáez
Cristina Martinez-Ramos
Seda Ozturan
Mikel Azkargorta
Félix Elortza
Mariló Gurruchaga
Isabel Goñi
Julio Suay
Ricardo Tejero
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Implant Dentistry / Issue 1/2021
Electronic ISSN: 2198-4034
DOI
https://doi.org/10.1186/s40729-021-00314-1

Other articles of this Issue 1/2021

International Journal of Implant Dentistry 1/2021 Go to the issue