Skip to main content
Top
Published in: International Journal of Implant Dentistry 1/2017

Open Access 01-12-2017 | Research

Comparative evaluation of the stability of two different dental implant designs and surgical protocols—a pilot study

Authors: David E. Simmons, Pooja Maney, Austin G. Teitelbaum, Susan Billiot, Lomesh J. Popat, A. Archontia Palaiologou

Published in: International Journal of Implant Dentistry | Issue 1/2017

Login to get access

Abstract

Background

The purpose of this study was to compare a parallel wall design implant to a tapered apex design implant when placed in the posterior maxilla using two different surgical protocols.

Methods

Twenty-seven patients (30 implants) were divided into three groups. All implants were 4 mm wide in diameter and 8 mm long.
Group A received 10 tapered implants (OSPTX) (Astra Tech OsseoSpeed TX™) using the soft bone surgical protocol (TXSoft).
Group B received 10 tapered implants (OSPTX) (AstraTech OsseoSpeedTX™) using the standard surgical protocol (TXStd).
Group C received 10 parallel wall implants (OSP) (AstraTech OsseoSpeed™) using the standard surgical protocol (OStd).
All implants were placed in the posterior maxilla in areas with a minimum of 8-mm crestal bone height.
Resonance frequency measurements (implant stability quotient (ISQ)) and torque values were recorded to determine initial implant stability. All implants were uncovered 6 weeks after placement and restored with a functionally loaded resin provisional screw-retained crown. Resonance frequency measurements were recorded at the time of implant placement, at 6 weeks and 6 and 12 months. Twelve months after implant placement, the stability of the implants was recorded and the final restorations were placed using custom CAD/CAM fabricated abutments and cement-retained PFM DSIGN porcelain crowns. After implant restoration, bone levels were measured at 6 and 12 months with standardized radiographs.

Results

Radiographic mean bone loss was less than 0.5 mm in all groups, with no statistically significant differences between the groups. Implant survival rate at 1 year was 93.3%, with 2/30 implants failing to integrate prior to functional loading at 6 weeks. No statistically significant difference was found between ISQ measurements between the three groups at all time intervals measured. Strong positive correlations were found between overall bone loss at 6 months and insertion torque at time of placement. A very weak correlation was found between insertion torque and ISQ values at time of implant placement.

Conclusions

Survival and stability of OSPTX and OSP implants is comparable. Osteotomy preparation by either standard or soft bone surgical protocol presented no significant effect on implant survival and stability for the specific implant designs.
Footnotes
1
DENTSPLY International, Susquehanna Commerce Center, 221 West Philadelphia Street, York, PA 17401
 
2
I-CAT 17 19; Imaging Services International LLC, 1910 North Penn Rd., Hatfield, PA 19440
 
3
Intra-Lock International, 6560 S. West Rogers Circle, Suite 24, Boca Raton, FL 33487
 
4
Osstell USA, 6700 Alexander Bell Drive, Suite 200, Columbia, MD 21046
 
5
ImageJ 1.50i Wayne Rasband National Institutes of Health, USA; https://​imagej.​nih.​gov/​ij/​; Java 1.8.0_77 (64bit)
 
Literature
1.
go back to reference Anitua E, Orive G. Short implants in maxillae and mandibles: a retrospective study with 1 to 8 years of follow-up. J Periodontol. 2010;81(6):819–26.CrossRefPubMed Anitua E, Orive G. Short implants in maxillae and mandibles: a retrospective study with 1 to 8 years of follow-up. J Periodontol. 2010;81(6):819–26.CrossRefPubMed
2.
go back to reference Feldman S, Boitel N, Weng D, Kohles SS, Stach RM. Five-year survival distributions of short-length (10 mm or less) machined-surfaced and Osseotite implants. Clin Implant Dent Relat Res. 2004;6(1):16–23.CrossRefPubMed Feldman S, Boitel N, Weng D, Kohles SS, Stach RM. Five-year survival distributions of short-length (10 mm or less) machined-surfaced and Osseotite implants. Clin Implant Dent Relat Res. 2004;6(1):16–23.CrossRefPubMed
3.
go back to reference Felice P, Cannizzaro G, Checchi V, Marchetti C, Pellegrino G, Censi P, et al. Vertical bone augmentation versus 7-mm-long implants in posterior atrophic mandibles. Results of a randomised controlled clinical trial of up to 4 months after loading. Eur J Oral Implantol. 2009;2(1):7–20.PubMed Felice P, Cannizzaro G, Checchi V, Marchetti C, Pellegrino G, Censi P, et al. Vertical bone augmentation versus 7-mm-long implants in posterior atrophic mandibles. Results of a randomised controlled clinical trial of up to 4 months after loading. Eur J Oral Implantol. 2009;2(1):7–20.PubMed
4.
go back to reference Misch CE. Short dental implants: a literature review and rationale for use. Dent Today. 2005;24(8):64–6. 8.PubMed Misch CE. Short dental implants: a literature review and rationale for use. Dent Today. 2005;24(8):64–6. 8.PubMed
5.
go back to reference Lee SA, Lee CT, Fu MM, Elmisalati W, Chuang SK. Systematic review and meta-analysis of randomized controlled trials for the management of limited vertical height in the posterior region: short implants (5 to 8 mm) vs longer implants (>8 mm) in vertically augmented sites. Int J Oral Maxillofac Implants. 2014;29(5):1085–97.CrossRefPubMed Lee SA, Lee CT, Fu MM, Elmisalati W, Chuang SK. Systematic review and meta-analysis of randomized controlled trials for the management of limited vertical height in the posterior region: short implants (5 to 8 mm) vs longer implants (>8 mm) in vertically augmented sites. Int J Oral Maxillofac Implants. 2014;29(5):1085–97.CrossRefPubMed
6.
go back to reference Mezzomo LA, Miller R, Triches D, Alonso F, Shinkai RS. Meta-analysis of single crowns supported by short (<10 mm) implants in the posterior region. J Clin Periodontol. 2014;41(2):191–213.CrossRefPubMed Mezzomo LA, Miller R, Triches D, Alonso F, Shinkai RS. Meta-analysis of single crowns supported by short (<10 mm) implants in the posterior region. J Clin Periodontol. 2014;41(2):191–213.CrossRefPubMed
7.
go back to reference Monje A, Chan HL, Fu JH, Suarez F, Galindo-Moreno P, Wang HL. Are short dental implants (<10 mm) effective? A meta-analysis on prospective clinical trials. J Periodontol. 2013;84(7):895–904.CrossRefPubMed Monje A, Chan HL, Fu JH, Suarez F, Galindo-Moreno P, Wang HL. Are short dental implants (<10 mm) effective? A meta-analysis on prospective clinical trials. J Periodontol. 2013;84(7):895–904.CrossRefPubMed
8.
go back to reference Monje A, Fu JH, Chan HL, Suarez F, Galindo-Moreno P, Catena A, et al. Do implant length and width matter for short dental implants (<10 mm)? A meta-analysis of prospective studies. J Periodontol. 2013;84(12):1783–91.CrossRefPubMed Monje A, Fu JH, Chan HL, Suarez F, Galindo-Moreno P, Catena A, et al. Do implant length and width matter for short dental implants (<10 mm)? A meta-analysis of prospective studies. J Periodontol. 2013;84(12):1783–91.CrossRefPubMed
9.
10.
go back to reference Abbou M. Primary stability and osseointegration: preliminary clinical results with a tapered diminishing-thread implant. Pract Proced Aesthet Dent. 2003;15(2):161–8. quiz 70.PubMed Abbou M. Primary stability and osseointegration: preliminary clinical results with a tapered diminishing-thread implant. Pract Proced Aesthet Dent. 2003;15(2):161–8. quiz 70.PubMed
11.
go back to reference Hall JA, Payne AG, Purton DG, Torr B. A randomized controlled clinical trial of conventional and immediately loaded tapered implants with screw-retained crowns. Int J Prosthodont. 2006;19(1):17–9.PubMed Hall JA, Payne AG, Purton DG, Torr B. A randomized controlled clinical trial of conventional and immediately loaded tapered implants with screw-retained crowns. Int J Prosthodont. 2006;19(1):17–9.PubMed
12.
go back to reference O'Sullivan D, Sennerby L, Meredith N. Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. Clin Oral Implants Res. 2004;15(4):474–80.CrossRefPubMed O'Sullivan D, Sennerby L, Meredith N. Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. Clin Oral Implants Res. 2004;15(4):474–80.CrossRefPubMed
13.
go back to reference Schwartz-Arad D, Herzberg R, Levin L. Evaluation of long-term implant success. J Periodontol. 2005;76(10):1623–8.CrossRefPubMed Schwartz-Arad D, Herzberg R, Levin L. Evaluation of long-term implant success. J Periodontol. 2005;76(10):1623–8.CrossRefPubMed
14.
go back to reference Alves CC, Neves M. Tapered implants: from indications to advantages. Int J Periodontics Restorative Dent. 2009;29(2):161–7.PubMed Alves CC, Neves M. Tapered implants: from indications to advantages. Int J Periodontics Restorative Dent. 2009;29(2):161–7.PubMed
15.
go back to reference Cawley P, Pavlakovic B, Alleyne DN, George R, Back T, Meredith N. The design of a vibration transducer to monitor the integrity of dental implants. Proc Inst Mech Eng H. 1998;212(4):265–72.CrossRefPubMed Cawley P, Pavlakovic B, Alleyne DN, George R, Back T, Meredith N. The design of a vibration transducer to monitor the integrity of dental implants. Proc Inst Mech Eng H. 1998;212(4):265–72.CrossRefPubMed
16.
go back to reference Meredith N, Shagaldi F, Alleyne D, Sennerby L, Cawley P. The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia. Clin Oral Implants Res. 1997;8(3):234–43.CrossRefPubMed Meredith N, Shagaldi F, Alleyne D, Sennerby L, Cawley P. The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia. Clin Oral Implants Res. 1997;8(3):234–43.CrossRefPubMed
17.
go back to reference Staedt H, Palarie V, Staedt A, Wolf JM, Lehmann KM, Ottl P, et al. Primary stability of cylindrical and conical dental implants in relation to insertion torque—a comparative ex vivo evaluation. Implant Dent. 2017;26(2):250–5.CrossRefPubMed Staedt H, Palarie V, Staedt A, Wolf JM, Lehmann KM, Ottl P, et al. Primary stability of cylindrical and conical dental implants in relation to insertion torque—a comparative ex vivo evaluation. Implant Dent. 2017;26(2):250–5.CrossRefPubMed
18.
go back to reference Stocchero M, Toia M, Cecchinato D, Becktor JP, Coelho PG, Jimbo R. Biomechanical, biologic, and clinical outcomes of undersized implant surgical preparation: a systematic review. Int J Oral Maxillofac Implants. 2016;31(6):1247–63.CrossRefPubMed Stocchero M, Toia M, Cecchinato D, Becktor JP, Coelho PG, Jimbo R. Biomechanical, biologic, and clinical outcomes of undersized implant surgical preparation: a systematic review. Int J Oral Maxillofac Implants. 2016;31(6):1247–63.CrossRefPubMed
19.
go back to reference Misch CE. Contemporary implant dentistry. 3rd ed. St. Louis: Elsevier; 2008. p. 1102. Misch CE. Contemporary implant dentistry. 3rd ed. St. Louis: Elsevier; 2008. p. 1102.
20.
go back to reference Lozano-Carrascal N, Salomo-Coll O, Gilabert-Cerda M, Farre-Pages N, Gargallo-Albiol J, Hernandez-Alfaro F. Effect of implant macro-design on primary stability: a prospective clinical study. Med Oral Patol Oral Cir Bucal. 2016;21(2):e214–21.CrossRefPubMedPubMedCentral Lozano-Carrascal N, Salomo-Coll O, Gilabert-Cerda M, Farre-Pages N, Gargallo-Albiol J, Hernandez-Alfaro F. Effect of implant macro-design on primary stability: a prospective clinical study. Med Oral Patol Oral Cir Bucal. 2016;21(2):e214–21.CrossRefPubMedPubMedCentral
21.
go back to reference Sierra-Rebolledo A, Allais-Leon M, Maurette-O'Brien P, Gay-Escoda C. Primary apical stability of tapered implants through reduction of final drilling dimensions in different bone density models: a biomechanical study. Implant Dent. 2016;25(6):775–82.CrossRefPubMed Sierra-Rebolledo A, Allais-Leon M, Maurette-O'Brien P, Gay-Escoda C. Primary apical stability of tapered implants through reduction of final drilling dimensions in different bone density models: a biomechanical study. Implant Dent. 2016;25(6):775–82.CrossRefPubMed
22.
go back to reference Acil Y, Sievers J, Gulses A, Ayna M, Wiltfang J, Terheyden H. Correlation between resonance frequency, insertion torque and bone-implant contact in self-cutting threaded implants. Odontology. 2016. [Epub ahead of print] Acil Y, Sievers J, Gulses A, Ayna M, Wiltfang J, Terheyden H. Correlation between resonance frequency, insertion torque and bone-implant contact in self-cutting threaded implants. Odontology. 2016. [Epub ahead of print]
23.
go back to reference Oxby G, Oxby F, Oxby J, Saltvik T, Nilsson P. Early loading of fluoridated implants placed in fresh extraction sockets and healed bone: a 3- to 5-year clinical and radiographic follow-up study of 39 consecutive patients. Clin Implant Dent Relat Res. 2015;17(5):898–907.CrossRefPubMed Oxby G, Oxby F, Oxby J, Saltvik T, Nilsson P. Early loading of fluoridated implants placed in fresh extraction sockets and healed bone: a 3- to 5-year clinical and radiographic follow-up study of 39 consecutive patients. Clin Implant Dent Relat Res. 2015;17(5):898–907.CrossRefPubMed
24.
go back to reference De Bruyn H, Raes F, Cooper LF, Reside G, Garriga JS, Tarrida LG, et al. Three-years clinical outcome of immediate provisionalization of single Osseospeed() implants in extraction sockets and healed ridges. Clin Oral Implants Res. 2013;24(2):217–23.CrossRefPubMed De Bruyn H, Raes F, Cooper LF, Reside G, Garriga JS, Tarrida LG, et al. Three-years clinical outcome of immediate provisionalization of single Osseospeed() implants in extraction sockets and healed ridges. Clin Oral Implants Res. 2013;24(2):217–23.CrossRefPubMed
25.
go back to reference Ebler S, Ioannidis A, Jung RE, Hammerle CH, Thoma DS. Prospective randomized controlled clinical study comparing two types of two-piece dental implants supporting fixed reconstructions—results at 1 year of loading. Clin Oral Implants Res. 2016;27(9):1169–77.CrossRefPubMed Ebler S, Ioannidis A, Jung RE, Hammerle CH, Thoma DS. Prospective randomized controlled clinical study comparing two types of two-piece dental implants supporting fixed reconstructions—results at 1 year of loading. Clin Oral Implants Res. 2016;27(9):1169–77.CrossRefPubMed
Metadata
Title
Comparative evaluation of the stability of two different dental implant designs and surgical protocols—a pilot study
Authors
David E. Simmons
Pooja Maney
Austin G. Teitelbaum
Susan Billiot
Lomesh J. Popat
A. Archontia Palaiologou
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Implant Dentistry / Issue 1/2017
Electronic ISSN: 2198-4034
DOI
https://doi.org/10.1186/s40729-017-0078-2

Other articles of this Issue 1/2017

International Journal of Implant Dentistry 1/2017 Go to the issue