Skip to main content
Top
Published in: International Journal of Implant Dentistry 1/2015

Open Access 01-12-2015 | Research

Effect of implant design on primary stability using torque-time curves in artificial bone

Authors: Yoko Yamaguchi, Makoto Shiota, Motohiro Munakata, Shohei Kasugai, Masahiko Ozeki

Published in: International Journal of Implant Dentistry | Issue 1/2015

Login to get access

Abstract

Background

Primary stability following implant placement is essential for osseointegration and is affected by both implant design and bone density. The aim of this study was to compare the relationships between torque-time curves and implant designs in a poor bone quality model.

Methods

Nine implant designs, with five implants in each category, were compared. A total of 90 implants (Straumann: Standard RN, Bone Level RC, Tapered Effect RN; Nobel Biocare: Brånemark MKIII, MKIV) were placed in type IV artificial bone. Torque-time curves of insertion and removal were recorded at the rate of 1000 samples/s by a torque analyzer.

Results

The torque-time curves were divided into initial, parallel, tapered, and platform areas. The mean torque rise rate of the parallel area was smallest at 0.36 N · cm/s, with a significant difference from those of the other areas (p < 0.05). Values of 2.14, 2.33, and 2.65 N · cm/s were obtained for the initial, tapered, and platform areas, respectively. The removal torque for six of the implant designs (Bone Level RC 8, 10, and 12 mm; Tapered Effect RN 10 mm; Brånemark MKIII 10 mm, MKIV 10 mm) was significantly smaller than the corresponding insertion torque (p < 0.05). However, the removal torque for ST6, 8, and 10 was almost the same as or slightly greater than the corresponding insertion torque.

Conclusions

The insertion torque-time curves and design features of the implants were accurately transferred. Increasing implant taper angle appeared to increase the torque rate. Torque was mainly generated from the superior surface to the valley of the thread and the inferior and axial surfaces of the platform, while the inferior and axial surfaces of the thread did not significantly affect torque generation.
Literature
1.
go back to reference Friberg B, Sennerby L, Roos J, Johansson P, Strid CG, Lekholm U. Evaluation of bone density using cutting resistance measurements and microradiography. An in vitro study in pig ribs. Clin Oral Implants Res. 1995;6:164–71.PubMedCrossRef Friberg B, Sennerby L, Roos J, Johansson P, Strid CG, Lekholm U. Evaluation of bone density using cutting resistance measurements and microradiography. An in vitro study in pig ribs. Clin Oral Implants Res. 1995;6:164–71.PubMedCrossRef
2.
go back to reference Chiapasco M, Gatti C, Rossi E, Haeflige W, Markwaldel TH. Implant-retained mandibular overdentures with immediate loading: a retrospective multicenter study on 226 consecutive cases. Clin Oral Implants Res. 1997;8:48–57.PubMedCrossRef Chiapasco M, Gatti C, Rossi E, Haeflige W, Markwaldel TH. Implant-retained mandibular overdentures with immediate loading: a retrospective multicenter study on 226 consecutive cases. Clin Oral Implants Res. 1997;8:48–57.PubMedCrossRef
3.
go back to reference Javed F, Romanos GE. The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent. 2010;38:612–20.PubMedCrossRef Javed F, Romanos GE. The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent. 2010;38:612–20.PubMedCrossRef
4.
go back to reference Lekholm U, Zarb GA. Patient Selection and Preparation. In: Brånemark P-I, Zarb GA, Albrektsson T, editors. Tissue integrated prostheses: osseointegration in clinical dentistry. Chicago: Quintessence Publishing Co. Inc; 1985. p. 199–209. Lekholm U, Zarb GA. Patient Selection and Preparation. In: Brånemark P-I, Zarb GA, Albrektsson T, editors. Tissue integrated prostheses: osseointegration in clinical dentistry. Chicago: Quintessence Publishing Co. Inc; 1985. p. 199–209.
5.
go back to reference Devlin H, Horner K, Ledgerton D. A comparison of maxillary and mandibular bone mineral densities. J Prosthet Dent. 1998;79:323–7.PubMedCrossRef Devlin H, Horner K, Ledgerton D. A comparison of maxillary and mandibular bone mineral densities. J Prosthet Dent. 1998;79:323–7.PubMedCrossRef
6.
go back to reference O’Sullivan D, Sennerby L, Meredith N. Measurements comparing the initial stability of five designs of dental implants: a human cadaver study. Clin Implant Dent Relat Res. 2000;2:85–92.PubMedCrossRef O’Sullivan D, Sennerby L, Meredith N. Measurements comparing the initial stability of five designs of dental implants: a human cadaver study. Clin Implant Dent Relat Res. 2000;2:85–92.PubMedCrossRef
7.
go back to reference Ochi S, Morris HF, Winkler S. The influence of implant type, material, coating, diameter, and length on periotest values at second-stage surgery: DICRG interim report no.4. Dental Implant Clinical Research Group. Implant Dent. 1994;3:159–62.PubMedCrossRef Ochi S, Morris HF, Winkler S. The influence of implant type, material, coating, diameter, and length on periotest values at second-stage surgery: DICRG interim report no.4. Dental Implant Clinical Research Group. Implant Dent. 1994;3:159–62.PubMedCrossRef
8.
go back to reference Winkler S, Morris HF, Ochi S. Implant survival to 36 months as related to length and diameter. Ann Periodontol. 2000;5:22–31.PubMedCrossRef Winkler S, Morris HF, Ochi S. Implant survival to 36 months as related to length and diameter. Ann Periodontol. 2000;5:22–31.PubMedCrossRef
9.
go back to reference Steigenga JT, Al-Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long-term implant success. Implant Dent. 2003;12:306–17.PubMedCrossRef Steigenga JT, Al-Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long-term implant success. Implant Dent. 2003;12:306–17.PubMedCrossRef
10.
go back to reference Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent. 2008;6:422–31.CrossRef Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent. 2008;6:422–31.CrossRef
11.
go back to reference Orsini E, Giavaresi G, Trire A, Ottani V, Salgarello S. Dental implant thread pitch and its influence on the osseointegration process: an in vivo comparison study. Int J Maxillofac Implants. 2010;2:383–92. Orsini E, Giavaresi G, Trire A, Ottani V, Salgarello S. Dental implant thread pitch and its influence on the osseointegration process: an in vivo comparison study. Int J Maxillofac Implants. 2010;2:383–92.
12.
go back to reference Romanos GE, Ciornei G, Jucan A, Malmstrom H, Gupta B. In vitro assessment of primary stability of Straumann implant designs. Clin Implant Dent Relat Res. 2012;16:89–95.PubMedCrossRef Romanos GE, Ciornei G, Jucan A, Malmstrom H, Gupta B. In vitro assessment of primary stability of Straumann implant designs. Clin Implant Dent Relat Res. 2012;16:89–95.PubMedCrossRef
13.
go back to reference Toyoshima T, Wagner W, Klein MO, Stender E, Wieland M, Al-Nawas B. Primary stability of a hybrid self-tapping implant compared to a cylindrical non-self-tapping implant with respect to drilling protocols in an ex vivo model. Clin Implant Dent Relat Res. 2011;13:71–8.PubMedCrossRef Toyoshima T, Wagner W, Klein MO, Stender E, Wieland M, Al-Nawas B. Primary stability of a hybrid self-tapping implant compared to a cylindrical non-self-tapping implant with respect to drilling protocols in an ex vivo model. Clin Implant Dent Relat Res. 2011;13:71–8.PubMedCrossRef
14.
go back to reference O’Sullivan D, Sennerby L, Jagger D, Meredith N. A comparison of two methods of enhancing implant primary stability. Clin Implant Dent Relat Res. 2004;6:48–57.PubMedCrossRef O’Sullivan D, Sennerby L, Jagger D, Meredith N. A comparison of two methods of enhancing implant primary stability. Clin Implant Dent Relat Res. 2004;6:48–57.PubMedCrossRef
15.
go back to reference O’Sullivan D, Sennerby L, Meredith M. Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. Clin Oral Implants Res. 2004;15:474–80.PubMedCrossRef O’Sullivan D, Sennerby L, Meredith M. Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. Clin Oral Implants Res. 2004;15:474–80.PubMedCrossRef
16.
go back to reference Akkocaoglu M, Uysal S, Tekdemir I, Akca K, Cehreli MC. Implant design and intraosseous stability of immediately placed implants: a human cadaver study. Clin Oral Impl Res. 2005;16:202–9.CrossRef Akkocaoglu M, Uysal S, Tekdemir I, Akca K, Cehreli MC. Implant design and intraosseous stability of immediately placed implants: a human cadaver study. Clin Oral Impl Res. 2005;16:202–9.CrossRef
17.
go back to reference Chong L, Khocht A, Suzuki JB, Gaughan J. Effect of implant design on initial stability of tapered implants. J Oral Implantol. 2009;3:130–5.CrossRef Chong L, Khocht A, Suzuki JB, Gaughan J. Effect of implant design on initial stability of tapered implants. J Oral Implantol. 2009;3:130–5.CrossRef
18.
go back to reference Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont. 1998;11:491–501.PubMed Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont. 1998;11:491–501.PubMed
19.
go back to reference Olive J, Aparicio C. Periotest method as a measure of osseointegrated oral implant stability. Int J Oral Maxillofac Implants. 1990;5:390–400.PubMed Olive J, Aparicio C. Periotest method as a measure of osseointegrated oral implant stability. Int J Oral Maxillofac Implants. 1990;5:390–400.PubMed
20.
go back to reference Teerlinck J, Quirynen M, Darius P, van Steenberghe D. Periotest: an objective clinical diagnosis of bone apposition toward implants. Int J Oral Maxillofac Implants. 1991;6:55–61.PubMed Teerlinck J, Quirynen M, Darius P, van Steenberghe D. Periotest: an objective clinical diagnosis of bone apposition toward implants. Int J Oral Maxillofac Implants. 1991;6:55–61.PubMed
21.
go back to reference Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res. 1996;7:261–7.PubMedCrossRef Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res. 1996;7:261–7.PubMedCrossRef
22.
go back to reference Johansson P, Strid K. Assessment of bone quality from cutting resistance during implant surgery. J Prothodont. 1998;9:491–501. Johansson P, Strid K. Assessment of bone quality from cutting resistance during implant surgery. J Prothodont. 1998;9:491–501.
23.
go back to reference Roberts WE, Smith RK, Zilberman Y, Mozsary PG, Smith RS. Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod. 1984;86:95–111.PubMedCrossRef Roberts WE, Smith RK, Zilberman Y, Mozsary PG, Smith RS. Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod. 1984;86:95–111.PubMedCrossRef
25.
go back to reference Meredith N. A review of implant design, geometry and placement. Appl Osseointegrantion Res. 2008;6:8–12. Meredith N. A review of implant design, geometry and placement. Appl Osseointegrantion Res. 2008;6:8–12.
26.
go back to reference Kim DR, Lim YJ, Kim MJ, Kwon HB, Kim SH. Self-cutting blades and their influence on primary stability of tapered dental implants in a simulated low-density bone model: a laboratory study. Oral Surg Oral Med Oral Pathol Oral Radiol Endo. 2011;112:573–80.CrossRef Kim DR, Lim YJ, Kim MJ, Kwon HB, Kim SH. Self-cutting blades and their influence on primary stability of tapered dental implants in a simulated low-density bone model: a laboratory study. Oral Surg Oral Med Oral Pathol Oral Radiol Endo. 2011;112:573–80.CrossRef
27.
go back to reference Park KJ, Kwon JY, Kim SK, Heo SJ, Koak JY, Lee JH, et al. The relationship between implant stability quotient values and implant insertion variables: a clinical study. J Oral Rehabil. 2012;39:151–9.PubMedCrossRef Park KJ, Kwon JY, Kim SK, Heo SJ, Koak JY, Lee JH, et al. The relationship between implant stability quotient values and implant insertion variables: a clinical study. J Oral Rehabil. 2012;39:151–9.PubMedCrossRef
28.
go back to reference Ueda M, Matsuki M, Jacobsson M, Tjellstrom A. Relationship between insertion torque and removal torque analyzed in fresh temporal bone. Int J Oral Maxillofac Implants. 1991;6:442–7.PubMed Ueda M, Matsuki M, Jacobsson M, Tjellstrom A. Relationship between insertion torque and removal torque analyzed in fresh temporal bone. Int J Oral Maxillofac Implants. 1991;6:442–7.PubMed
29.
go back to reference Niimi A, Ozeki K, Ueda M, Nakayama B. A comparative study of removal torque of endosseous implants in the fibula, iliac crest and scapula of cadavers: preliminary report. Clin Oral Implants Res. 1997;8:286–9.PubMedCrossRef Niimi A, Ozeki K, Ueda M, Nakayama B. A comparative study of removal torque of endosseous implants in the fibula, iliac crest and scapula of cadavers: preliminary report. Clin Oral Implants Res. 1997;8:286–9.PubMedCrossRef
30.
go back to reference Simon H, Caputo AA. Removal torque of immediately loaded transitional endosseous implants in human subjects. Int J Oral Maxillofac Implants. 2002;17:839–45.PubMed Simon H, Caputo AA. Removal torque of immediately loaded transitional endosseous implants in human subjects. Int J Oral Maxillofac Implants. 2002;17:839–45.PubMed
31.
go back to reference Marin C, Granato R, Suzuki M, Gil JN, Piattelli A, Coelho G. Removal torque and histomorphometric evaluation of bioceramic grit-blasted/acid-etched and dual acid-etched implant surfaces: an experimental study in dogs. J Periodontol. 2008;79:1942–9.PubMedCrossRef Marin C, Granato R, Suzuki M, Gil JN, Piattelli A, Coelho G. Removal torque and histomorphometric evaluation of bioceramic grit-blasted/acid-etched and dual acid-etched implant surfaces: an experimental study in dogs. J Periodontol. 2008;79:1942–9.PubMedCrossRef
32.
go back to reference Ahn SJ, Leesungbok R, Lee SW, Heo YK, Kang KL. Differences in implant stability associated with various methods of preparation of the implant bed: an in vitro study. J Prosthetic Dent. 2012;107:366–72.CrossRef Ahn SJ, Leesungbok R, Lee SW, Heo YK, Kang KL. Differences in implant stability associated with various methods of preparation of the implant bed: an in vitro study. J Prosthetic Dent. 2012;107:366–72.CrossRef
33.
go back to reference Blickford JH. An introduction to the design and behavior of bolted joints. New York: Marcel Dekker Inc; 1995. p. 213. Blickford JH. An introduction to the design and behavior of bolted joints. New York: Marcel Dekker Inc; 1995. p. 213.
34.
go back to reference Shalabi MM, Wolke JGC, Jansen JA. The effects of implant surface roughness and surgical technique on implant fixation in an in vitro model. Clin Oral Implants Res. 2006;17:172–8.PubMedCrossRef Shalabi MM, Wolke JGC, Jansen JA. The effects of implant surface roughness and surgical technique on implant fixation in an in vitro model. Clin Oral Implants Res. 2006;17:172–8.PubMedCrossRef
35.
go back to reference Sakoh J, Wahlmann U, Stender E, Nat R, Al-Nawas B, Wagner W. Primary stability of a conical implant and a hybrid, cylindric screw-type implant in vitro. Int J Oral Maxillofac Implants. 2006;21:560–6.PubMed Sakoh J, Wahlmann U, Stender E, Nat R, Al-Nawas B, Wagner W. Primary stability of a conical implant and a hybrid, cylindric screw-type implant in vitro. Int J Oral Maxillofac Implants. 2006;21:560–6.PubMed
36.
go back to reference Tabassum A, Meijer GJ, Wolke JGC, Jansen JA. Influence of the surgical technique and surface roughness on the primary stability of an implant in artificial bone with a density equivalent to maxillary bone: a laboratory study. Clin Oral Implants Res. 2009;20:327–32.PubMedCrossRef Tabassum A, Meijer GJ, Wolke JGC, Jansen JA. Influence of the surgical technique and surface roughness on the primary stability of an implant in artificial bone with a density equivalent to maxillary bone: a laboratory study. Clin Oral Implants Res. 2009;20:327–32.PubMedCrossRef
37.
go back to reference Atsumi M, Park SH, Wang HL. Methods used to assess implant stability: current status. Int J Oral Maxillofac Implants. 2007;22:743–54.PubMed Atsumi M, Park SH, Wang HL. Methods used to assess implant stability: current status. Int J Oral Maxillofac Implants. 2007;22:743–54.PubMed
38.
go back to reference Duyck J, Renold HJ, Van Oosterwyck H, Naert I, Vander Sloten J, Ellingsen JE. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clin Oral Implants Res. 2001;12:207–18.PubMedCrossRef Duyck J, Renold HJ, Van Oosterwyck H, Naert I, Vander Sloten J, Ellingsen JE. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clin Oral Implants Res. 2001;12:207–18.PubMedCrossRef
Metadata
Title
Effect of implant design on primary stability using torque-time curves in artificial bone
Authors
Yoko Yamaguchi
Makoto Shiota
Motohiro Munakata
Shohei Kasugai
Masahiko Ozeki
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Implant Dentistry / Issue 1/2015
Electronic ISSN: 2198-4034
DOI
https://doi.org/10.1186/s40729-015-0024-0

Other articles of this Issue 1/2015

International Journal of Implant Dentistry 1/2015 Go to the issue