Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2016

Open Access 01-12-2016 | Research

LRP1 expression in microglia is protective during CNS autoimmunity

Authors: Tzu-Ying Chuang, Yong Guo, Scott M. Seki, Abagail M. Rosen, David M. Johanson, James W. Mandell, Claudia F. Lucchinetti, Alban Gaultier

Published in: Acta Neuropathologica Communications | Issue 1/2016

Login to get access

Abstract

Multiple sclerosis is a devastating neurological disorder characterized by the autoimmune destruction of the central nervous system myelin. While T cells are known orchestrators of the immune response leading to MS pathology, the precise contribution of CNS resident and peripheral infiltrating myeloid cells is less well described. Here, we explore the myeloid cell function of Low-density lipoprotein receptor-related protein-1 (LRP1), a scavenger receptor involved in myelin clearance and the inflammatory response, in the context of Multiple sclerosis. Supporting its central role in Multiple sclerosis pathology, we find that LRP1 expression is increased in Multiple sclerosis lesions in comparison to the surrounding healthy tissue. Using two genetic mouse models, we show that deletion of LRP1 in microglia, but not in peripheral macrophages, negatively impacts the progression of experimental autoimmune encephalomyelitis, an animal model of Multiple sclerosis. We further show that the increased disease severity in experimental autoimmune encephalomyelitis is not due to haplodeficiency of the Cx3cr1 locus. At the cellular level, microglia lacking LRP1 adopt a pro-inflammatory phenotype characterized by amoeboid morphology and increased production of the inflammatory mediator TNF-α. We also show that LRP1 functions as a robust inhibitor of NF-kB activation in myeloid cells via a MyD88 dependent pathway, potentially explaining the increase in disease severity observed in mice lacking LRP1 expression in microglia. Taken together, our data suggest that the function of LRP1 in microglia is to keep these cells in an anti-inflammatory and neuroprotective status during inflammatory insult, including experimental autoimmune encephalomyelitis and potentially in Multiple sclerosis.
Appendix
Available only for authorised users
Literature
2.
go back to reference Ajami B et al. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14(9):1142–9.CrossRefPubMed Ajami B et al. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14(9):1142–9.CrossRefPubMed
3.
go back to reference Lucchinetti CF, Bruck W, Lassmann H. Evidence for pathogenic heterogeneity in multiple sclerosis. Ann Neurol. 2004;56(2):308.CrossRefPubMed Lucchinetti CF, Bruck W, Lassmann H. Evidence for pathogenic heterogeneity in multiple sclerosis. Ann Neurol. 2004;56(2):308.CrossRefPubMed
4.
go back to reference Rinner WA, et al. Resident microglia and hematogenous macrophages as phagocytes in adoptively transferred experimental autoimmune encephalomyelitis: an investigation using rat radiation bone marrow chimeras. Glia. 1995;14(4):257–66.CrossRefPubMed Rinner WA, et al. Resident microglia and hematogenous macrophages as phagocytes in adoptively transferred experimental autoimmune encephalomyelitis: an investigation using rat radiation bone marrow chimeras. Glia. 1995;14(4):257–66.CrossRefPubMed
5.
go back to reference King IL, Dickendesher TL, Segal BM. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood. 2009;113(14):3190–7.CrossRefPubMedPubMedCentral King IL, Dickendesher TL, Segal BM. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood. 2009;113(14):3190–7.CrossRefPubMedPubMedCentral
7.
go back to reference Bogie JF, Stinissen P, Hendriks JJ. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol. 2014;128(2):191–213.CrossRefPubMed Bogie JF, Stinissen P, Hendriks JJ. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol. 2014;128(2):191–213.CrossRefPubMed
8.
go back to reference Vainchtein ID, et al. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed. Glia. 2014;62(10):1724–35.CrossRefPubMed Vainchtein ID, et al. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed. Glia. 2014;62(10):1724–35.CrossRefPubMed
9.
go back to reference Goldmann T, et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci. 2013;16(11):1618–26.CrossRefPubMed Goldmann T, et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci. 2013;16(11):1618–26.CrossRefPubMed
10.
go back to reference Fernandez-Castaneda A, et al. Identification of the low density lipoprotein (LDL) receptor-related protein-1 interactome in central nervous system myelin suggests a role in the clearance of necrotic cell debris. J Biol Chem. 2013;288(7):4538–48.CrossRefPubMed Fernandez-Castaneda A, et al. Identification of the low density lipoprotein (LDL) receptor-related protein-1 interactome in central nervous system myelin suggests a role in the clearance of necrotic cell debris. J Biol Chem. 2013;288(7):4538–48.CrossRefPubMed
11.
go back to reference Gaultier A, et al. Low-density lipoprotein receptor-related protein 1 is an essential receptor for myelin phagocytosis. J Cell Sci. 2009;122(Pt 8):1155–62.CrossRefPubMedPubMedCentral Gaultier A, et al. Low-density lipoprotein receptor-related protein 1 is an essential receptor for myelin phagocytosis. J Cell Sci. 2009;122(Pt 8):1155–62.CrossRefPubMedPubMedCentral
12.
go back to reference Gardai SJ, et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 2005;123(2):321–34.CrossRefPubMed Gardai SJ, et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 2005;123(2):321–34.CrossRefPubMed
14.
go back to reference Lillis AP, et al. LDL Receptor-Related Protein 1: Unique Tissue-Specific Functions Revealed by Selective Gene Knockout Studies. Physiol Rev. 2008;88(3):887–918.CrossRefPubMedPubMedCentral Lillis AP, et al. LDL Receptor-Related Protein 1: Unique Tissue-Specific Functions Revealed by Selective Gene Knockout Studies. Physiol Rev. 2008;88(3):887–918.CrossRefPubMedPubMedCentral
15.
go back to reference Gaultier A, et al. Regulation of tumor necrosis factor receptor-1 and the IKK-NF-kappaB pathway by LDL receptor-related protein explains the antiinflammatory activity of this receptor. Blood. 2008;111(11):5316–25.CrossRefPubMedPubMedCentral Gaultier A, et al. Regulation of tumor necrosis factor receptor-1 and the IKK-NF-kappaB pathway by LDL receptor-related protein explains the antiinflammatory activity of this receptor. Blood. 2008;111(11):5316–25.CrossRefPubMedPubMedCentral
16.
go back to reference van Loo G, et al. Inhibition of transcription factor NF-kappaB in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nat Immunol. 2006;7(9):954–61.CrossRefPubMed van Loo G, et al. Inhibition of transcription factor NF-kappaB in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nat Immunol. 2006;7(9):954–61.CrossRefPubMed
17.
go back to reference Hilliard B, et al. Experimental autoimmune encephalomyelitis in NF-kappa B-deficient mice:roles of NF-kappa B in the activation and differentiation of autoreactive T cells. J Immunol. 1999;163(5):2937–43.PubMed Hilliard B, et al. Experimental autoimmune encephalomyelitis in NF-kappa B-deficient mice:roles of NF-kappa B in the activation and differentiation of autoreactive T cells. J Immunol. 1999;163(5):2937–43.PubMed
18.
19.
go back to reference Pahan K, Schmid M. Activation of nuclear factor-kB in the spinal cord of experimental allergic encephalomyelitis. Neurosci Lett. 2000;287(1):17–20.CrossRefPubMed Pahan K, Schmid M. Activation of nuclear factor-kB in the spinal cord of experimental allergic encephalomyelitis. Neurosci Lett. 2000;287(1):17–20.CrossRefPubMed
20.
go back to reference Dasgupta S, et al. Antineuroinflammatory effect of NF-kappaB essential modifier-binding domain peptides in the adoptive transfer model of experimental allergic encephalomyelitis. J Immunol. 2004;173(2):1344–54.CrossRefPubMed Dasgupta S, et al. Antineuroinflammatory effect of NF-kappaB essential modifier-binding domain peptides in the adoptive transfer model of experimental allergic encephalomyelitis. J Immunol. 2004;173(2):1344–54.CrossRefPubMed
21.
go back to reference Popescu BF, Pirko I, Lucchinetti CF. Pathology of multiple sclerosis: where do we stand? Continuum (Minneap Minn). 2013;19(4 Multiple Sclerosis):901–21. Popescu BF, Pirko I, Lucchinetti CF. Pathology of multiple sclerosis: where do we stand? Continuum (Minneap Minn). 2013;19(4 Multiple Sclerosis):901–21.
22.
go back to reference Rohlmann A, et al. Sustained somatic gene inactivation by viral transfer of Cre recombinase. Nat Biotechnol. 1996;14(11):1562–5.CrossRefPubMed Rohlmann A, et al. Sustained somatic gene inactivation by viral transfer of Cre recombinase. Nat Biotechnol. 1996;14(11):1562–5.CrossRefPubMed
23.
go back to reference Clausen BE, et al. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 1999;8(4):265–77.CrossRefPubMed Clausen BE, et al. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 1999;8(4):265–77.CrossRefPubMed
24.
go back to reference Cronk JC, et al. Methyl-CpG Binding Protein 2 Regulates Microglia and Macrophage Gene Expression in Response to Inflammatory Stimuli. Immunity. 2015;42(4):679–91.CrossRefPubMedPubMedCentral Cronk JC, et al. Methyl-CpG Binding Protein 2 Regulates Microglia and Macrophage Gene Expression in Response to Inflammatory Stimuli. Immunity. 2015;42(4):679–91.CrossRefPubMedPubMedCentral
25.
go back to reference Remick DG, et al. Six at six: interleukin-6 measured 6 h after the initiation of sepsis predicts mortality over 3 days. Shock. 2002;17(6):463–7.CrossRefPubMed Remick DG, et al. Six at six: interleukin-6 measured 6 h after the initiation of sepsis predicts mortality over 3 days. Shock. 2002;17(6):463–7.CrossRefPubMed
26.
go back to reference Wolf BB, et al. Characterization and immunohistochemical localization of alpha 2-macroglobulin receptor (low-density lipoprotein receptor-related protein) in human brain. Am J Pathol. 1992;141(1):37–42.PubMedPubMedCentral Wolf BB, et al. Characterization and immunohistochemical localization of alpha 2-macroglobulin receptor (low-density lipoprotein receptor-related protein) in human brain. Am J Pathol. 1992;141(1):37–42.PubMedPubMedCentral
29.
go back to reference Overton CD, et al. Deletion of macrophage LDL receptor-related protein increases atherogenesis in the mouse. Circ Res. 2007;100(5):670–7.CrossRefPubMed Overton CD, et al. Deletion of macrophage LDL receptor-related protein increases atherogenesis in the mouse. Circ Res. 2007;100(5):670–7.CrossRefPubMed
30.
go back to reference Stromnes IM, Goverman JM. Active induction of experimental allergic encephalomyelitis. Nat Protoc. 2006;1(4):1810–9.CrossRefPubMed Stromnes IM, Goverman JM. Active induction of experimental allergic encephalomyelitis. Nat Protoc. 2006;1(4):1810–9.CrossRefPubMed
31.
go back to reference Yona S, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38(1):79–91.CrossRefPubMed Yona S, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38(1):79–91.CrossRefPubMed
32.
go back to reference Subramanian M, et al. An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J Clin Invest. 2014;124(3):1296–308.CrossRefPubMedPubMedCentral Subramanian M, et al. An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J Clin Invest. 2014;124(3):1296–308.CrossRefPubMedPubMedCentral
33.
go back to reference Jung S, et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol. 2000;20(11):4106–14.CrossRefPubMedPubMedCentral Jung S, et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol. 2000;20(11):4106–14.CrossRefPubMedPubMedCentral
34.
go back to reference Bennett J, et al. Blood-brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J Neuroimmunol. 2010;229(1-2):180–91.CrossRefPubMed Bennett J, et al. Blood-brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J Neuroimmunol. 2010;229(1-2):180–91.CrossRefPubMed
36.
go back to reference Ramirez SH, et al. Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood-brain barrier dysfunction under inflammatory conditions. J Neurosci. 2012;32(12):4004–16.CrossRefPubMedPubMedCentral Ramirez SH, et al. Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood-brain barrier dysfunction under inflammatory conditions. J Neurosci. 2012;32(12):4004–16.CrossRefPubMedPubMedCentral
37.
go back to reference Chen Z, et al. Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. J Neurosci. 2012;32(34):11706–15.CrossRefPubMedPubMedCentral Chen Z, et al. Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. J Neurosci. 2012;32(34):11706–15.CrossRefPubMedPubMedCentral
38.
go back to reference Selmaj KW, Raine CS. Experimental autoimmune encephalomyelitis: immunotherapy with anti-tumor necrosis factor antibodies and soluble tumor necrosis factor receptors. Neurology. 1995;45(6 Suppl 6):S44–9.CrossRefPubMed Selmaj KW, Raine CS. Experimental autoimmune encephalomyelitis: immunotherapy with anti-tumor necrosis factor antibodies and soluble tumor necrosis factor receptors. Neurology. 1995;45(6 Suppl 6):S44–9.CrossRefPubMed
39.
41.
go back to reference Hendrickx DA, et al. Selective upregulation of scavenger receptors in and around demyelinating areas in multiple sclerosis. J Neuropathol Exp Neurol. 2013;72(2):106–18.CrossRefPubMed Hendrickx DA, et al. Selective upregulation of scavenger receptors in and around demyelinating areas in multiple sclerosis. J Neuropathol Exp Neurol. 2013;72(2):106–18.CrossRefPubMed
42.
go back to reference Lopes MB, et al. Expression of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein is increased in reactive and neoplastic glial cells. FEBS Lett. 1994;338(3):301–5.CrossRefPubMed Lopes MB, et al. Expression of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein is increased in reactive and neoplastic glial cells. FEBS Lett. 1994;338(3):301–5.CrossRefPubMed
43.
go back to reference May P, Bock HH, Nofer JR. Low density receptor-related protein 1 (LRP1) promotes anti-inflammatory phenotype in murine macrophages. Cell Tissue Res. 2013;354(3):887–9.CrossRefPubMed May P, Bock HH, Nofer JR. Low density receptor-related protein 1 (LRP1) promotes anti-inflammatory phenotype in murine macrophages. Cell Tissue Res. 2013;354(3):887–9.CrossRefPubMed
44.
45.
go back to reference D’Mello C, Le T, Swain MG. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci. 2009;29(7):2089–102.CrossRefPubMed D’Mello C, Le T, Swain MG. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci. 2009;29(7):2089–102.CrossRefPubMed
46.
go back to reference Lewis ND, et al. RNA sequencing of microglia and monocyte-derived macrophages from mice with experimental autoimmune encephalomyelitis illustrates a changing phenotype with disease course. J Neuroimmunol. 2014;277(1-2):26–38.CrossRefPubMed Lewis ND, et al. RNA sequencing of microglia and monocyte-derived macrophages from mice with experimental autoimmune encephalomyelitis illustrates a changing phenotype with disease course. J Neuroimmunol. 2014;277(1-2):26–38.CrossRefPubMed
47.
go back to reference Butovsky O, et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17(1):131–43.CrossRefPubMed Butovsky O, et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17(1):131–43.CrossRefPubMed
48.
go back to reference Kozlowski C, Weimer RM. An automated method to quantify microglia morphology and application to monitor activation state longitudinally in vivo. PLoS One. 2012;7(2):e31814.CrossRefPubMedPubMedCentral Kozlowski C, Weimer RM. An automated method to quantify microglia morphology and application to monitor activation state longitudinally in vivo. PLoS One. 2012;7(2):e31814.CrossRefPubMedPubMedCentral
49.
go back to reference Boven LA, et al. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain. 2006;129(Pt 2):517–26.PubMed Boven LA, et al. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain. 2006;129(Pt 2):517–26.PubMed
Metadata
Title
LRP1 expression in microglia is protective during CNS autoimmunity
Authors
Tzu-Ying Chuang
Yong Guo
Scott M. Seki
Abagail M. Rosen
David M. Johanson
James W. Mandell
Claudia F. Lucchinetti
Alban Gaultier
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2016
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-016-0343-2

Other articles of this Issue 1/2016

Acta Neuropathologica Communications 1/2016 Go to the issue