Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2014

Open Access 01-12-2014 | Research

Treg cells mediate recovery from EAE by controlling effector T cell proliferation and motility in the CNS

Authors: Michail Koutrolos, Kerstin Berer, Naoto Kawakami, Hartmut Wekerle, Gurumoorthy Krishnamoorthy

Published in: Acta Neuropathologica Communications | Issue 1/2014

Login to get access

Abstract

Regulatory T cells are crucial in controlling various functions of effector T cells during experimental autoimmune encephalomyelitis. While regulatory T cells are reported to exert their immunomodulatory effects in the peripheral immune organs, their role within the central nervous system (CNS) during experimental autoimmune encephalomyelitis is unclear. Here, by combining a selectively timed regulatory T cells depletion with 2-photon microscopy, we report that regulatory T cells exercise their dynamic control over effector T cells in the CNS. Acute depletion of regulatory T cells exacerbated experimental autoimmune encephalomyelitis severity which was accompanied by increased pro-inflammatory cytokine production and proliferation of effector T cells. Intravital microscopy revealed that, in the absence of regulatory T cells, the velocity of effector T cells was decreased with simultaneous increase in the proportion of stationary phase cells in the CNS. Based on these data, we conclude that regulatory T cells mediate recovery from experimental autoimmune encephalomyelitis by controlling cytokine production, proliferation and motility of effector T cells in the CNS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Josefowicz SZ, Lu LF, Rudensky AY: Regulatory T cells: Mechanisms of differentiation and function. Annu Rev Immunol 2012, 30: 531–564. doi:10.1146/annurev.immunol.25.022106.141623 10.1146/annurev.immunol.25.022106.141623CrossRefPubMed Josefowicz SZ, Lu LF, Rudensky AY: Regulatory T cells: Mechanisms of differentiation and function. Annu Rev Immunol 2012, 30: 531–564. doi:10.1146/annurev.immunol.25.022106.141623 10.1146/annurev.immunol.25.022106.141623CrossRefPubMed
2.
go back to reference Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD: The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001, 27: 20–21. 10.1038/83713CrossRefPubMed Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD: The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001, 27: 20–21. 10.1038/83713CrossRefPubMed
3.
go back to reference Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F: Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001, 27: 68–73. doi:10.1038/83784 10.1038/83784CrossRefPubMed Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F: Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001, 27: 68–73. doi:10.1038/83784 10.1038/83784CrossRefPubMed
4.
go back to reference Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4 + CD25+ regulatory T cells. Nat Immunol 2003, 4: 330–336. doi:10.1038/ni904 10.1038/ni904CrossRefPubMed Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4 + CD25+ regulatory T cells. Nat Immunol 2003, 4: 330–336. doi:10.1038/ni904 10.1038/ni904CrossRefPubMed
5.
go back to reference Kim JM, Rasmussen JP, Rudensky AY: Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 2007, 8: 277–284. doi:10.1038/ni1428 10.1038/ni1437CrossRef Kim JM, Rasmussen JP, Rudensky AY: Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 2007, 8: 277–284. doi:10.1038/ni1428 10.1038/ni1437CrossRef
6.
go back to reference Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G, Hamann A, Wagner H, Huehn J, Sparwasser T: Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med 2007, 204: 57–63. 10.1084/jem.20061852CrossRefPubMedPubMedCentral Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G, Hamann A, Wagner H, Huehn J, Sparwasser T: Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med 2007, 204: 57–63. 10.1084/jem.20061852CrossRefPubMedPubMedCentral
7.
go back to reference Krishnamoorthy G, Holz A, Wekerle H: Experimental models of spontaneous autoimmune disease in the central nervous system. J Mol Med 2007, 85: 1161–1173. doi:10.1007/s00109–007–0218-x 10.1007/s00109-007-0218-xCrossRefPubMed Krishnamoorthy G, Holz A, Wekerle H: Experimental models of spontaneous autoimmune disease in the central nervous system. J Mol Med 2007, 85: 1161–1173. doi:10.1007/s00109–007–0218-x 10.1007/s00109-007-0218-xCrossRefPubMed
8.
go back to reference Korn T, Reddy J, Gao WD, Bettelli E, Awasthi A, Petersen TR, Bäckström BT, Sobel RA, Wucherpfennig KW, Strom TB, Oukka M, Kuchroo VK: Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med 2007, 13: 423–431. 10.1038/nm1564CrossRefPubMedPubMedCentral Korn T, Reddy J, Gao WD, Bettelli E, Awasthi A, Petersen TR, Bäckström BT, Sobel RA, Wucherpfennig KW, Strom TB, Oukka M, Kuchroo VK: Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med 2007, 13: 423–431. 10.1038/nm1564CrossRefPubMedPubMedCentral
9.
go back to reference McGeachy MJ, Stephens LA, Anderton SM: Natural recovery and protection from autoimmune encephalomyelitis: Contribution of CD4 + CD25 + regulatory cells within the central nervous system. J Immunol 2005, 175: 3025–3032. 10.4049/jimmunol.175.5.3025CrossRefPubMed McGeachy MJ, Stephens LA, Anderton SM: Natural recovery and protection from autoimmune encephalomyelitis: Contribution of CD4 + CD25 + regulatory cells within the central nervous system. J Immunol 2005, 175: 3025–3032. 10.4049/jimmunol.175.5.3025CrossRefPubMed
10.
go back to reference O'Connor RA, Malpass KH, Anderton SM: The inflamed central nervous system drives the activation and rapid proliferation of Foxp3 + regulatory T cells. J Immunol 2007, 179: 958–966. 10.4049/jimmunol.179.2.958CrossRefPubMed O'Connor RA, Malpass KH, Anderton SM: The inflamed central nervous system drives the activation and rapid proliferation of Foxp3 + regulatory T cells. J Immunol 2007, 179: 958–966. 10.4049/jimmunol.179.2.958CrossRefPubMed
11.
go back to reference Kohm AP, Carpentier PA, Anger HA, Miller SD: Cutting edge: CD4 + CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 2002, 169: 4712–4716. 10.4049/jimmunol.169.9.4712CrossRefPubMed Kohm AP, Carpentier PA, Anger HA, Miller SD: Cutting edge: CD4 + CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 2002, 169: 4712–4716. 10.4049/jimmunol.169.9.4712CrossRefPubMed
12.
go back to reference Mekala DJ, Alli RS, Geiger TL: IL-10-dependent infectious tolerance after the treatment of experimental allergic encephalomyelitis with redirected CD4 + CD25 + T lymphocytes. Proc Natl Acad Sci U S A 2005, 102: 11817–11822. 10.1073/pnas.0505445102CrossRefPubMedPubMedCentral Mekala DJ, Alli RS, Geiger TL: IL-10-dependent infectious tolerance after the treatment of experimental allergic encephalomyelitis with redirected CD4 + CD25 + T lymphocytes. Proc Natl Acad Sci U S A 2005, 102: 11817–11822. 10.1073/pnas.0505445102CrossRefPubMedPubMedCentral
13.
go back to reference Stephens LA, Malpass KH, Anderton SM: Curing CNS autoimmune disease with myelin-reactive Foxp3(+) Treg. Eur J Immunol 2009, 39: 1108–1117. 10.1002/eji.200839073CrossRefPubMed Stephens LA, Malpass KH, Anderton SM: Curing CNS autoimmune disease with myelin-reactive Foxp3(+) Treg. Eur J Immunol 2009, 39: 1108–1117. 10.1002/eji.200839073CrossRefPubMed
14.
go back to reference Gärtner D, Hoff H, Gimsa U, Burmester GR, Brunner-Weinzierl MC: CD25 regulatory T cells determine secondary but not primary remission in EAE: Impact on long-term disease progression. J Neuroimmunol 2006, 172: 73–84. 10.1016/j.jneuroim.2005.11.003CrossRefPubMed Gärtner D, Hoff H, Gimsa U, Burmester GR, Brunner-Weinzierl MC: CD25 regulatory T cells determine secondary but not primary remission in EAE: Impact on long-term disease progression. J Neuroimmunol 2006, 172: 73–84. 10.1016/j.jneuroim.2005.11.003CrossRefPubMed
15.
go back to reference Montero E, Nussbaum G, Kaye JF, Perez R, Lage A, Ben-Nun A, Cohen IR: Regulation of experimental autoimmune encephalomyelitis by CD4 +, CD25 + and CD8 + T cells: analysis using depleting antibodies. J Autoimmun 2004, 23: 1–7. 10.1016/j.jaut.2004.05.001CrossRefPubMed Montero E, Nussbaum G, Kaye JF, Perez R, Lage A, Ben-Nun A, Cohen IR: Regulation of experimental autoimmune encephalomyelitis by CD4 +, CD25 + and CD8 + T cells: analysis using depleting antibodies. J Autoimmun 2004, 23: 1–7. 10.1016/j.jaut.2004.05.001CrossRefPubMed
16.
go back to reference Zhang X, Koldzic DN, Izikson L, Reddy J, Nazareno RF, Sakaguchi S, Kuchroo VK, Weiner HL: IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25 + CD4+ regulatory T cells. Int Immunol 2004, 16: 249–256. 10.1093/intimm/dxh029CrossRefPubMed Zhang X, Koldzic DN, Izikson L, Reddy J, Nazareno RF, Sakaguchi S, Kuchroo VK, Weiner HL: IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25 + CD4+ regulatory T cells. Int Immunol 2004, 16: 249–256. 10.1093/intimm/dxh029CrossRefPubMed
17.
go back to reference Hori S, Haury M, Coutinho A, Demengeot J: Specificity requirements for selection and effector functions of CD25 + 4 + regulatory T cells in anti-myelin basic protein T cell receptor transgenic mice. Proc Natl Acad Sci U S A 2002, 99: 8213–8218. 10.1073/pnas.122224799CrossRefPubMedPubMedCentral Hori S, Haury M, Coutinho A, Demengeot J: Specificity requirements for selection and effector functions of CD25 + 4 + regulatory T cells in anti-myelin basic protein T cell receptor transgenic mice. Proc Natl Acad Sci U S A 2002, 99: 8213–8218. 10.1073/pnas.122224799CrossRefPubMedPubMedCentral
18.
go back to reference Olivares-Villagómez D, Wang Y, Lafaille JJ: Regulatory CD4 + T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J Exp Med 1998, 188: 1883–1894. 10.1084/jem.188.10.1883CrossRefPubMedPubMedCentral Olivares-Villagómez D, Wang Y, Lafaille JJ: Regulatory CD4 + T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J Exp Med 1998, 188: 1883–1894. 10.1084/jem.188.10.1883CrossRefPubMedPubMedCentral
19.
go back to reference Lowther DE, Chong DL, Ascough S, Ettorre A, Ingram RJ, Boyton RJ, Altmann DM: Th1 not Th17 cells drive spontaneous MS-like disease despite a functional regulatory T cell response. Acta Neuropathol 2013, 126: 501–515. doi:10.1007/s00401–013–1159–9 10.1007/s00401-013-1159-9CrossRefPubMed Lowther DE, Chong DL, Ascough S, Ettorre A, Ingram RJ, Boyton RJ, Altmann DM: Th1 not Th17 cells drive spontaneous MS-like disease despite a functional regulatory T cell response. Acta Neuropathol 2013, 126: 501–515. doi:10.1007/s00401–013–1159–9 10.1007/s00401-013-1159-9CrossRefPubMed
20.
go back to reference Reddy J, Waldner H, Zhang XM, Illés Z, Wucherpfennig KW, Sobel RA, Kuchroo VK: CD4+CD25+ regulatory T cells contribute to gender differences in susceptibility to experimental autoimmune encephalomyelitis. J Immunol 2005, 175: 5591–5595. 10.4049/jimmunol.175.9.5591CrossRefPubMed Reddy J, Waldner H, Zhang XM, Illés Z, Wucherpfennig KW, Sobel RA, Kuchroo VK: CD4+CD25+ regulatory T cells contribute to gender differences in susceptibility to experimental autoimmune encephalomyelitis. J Immunol 2005, 175: 5591–5595. 10.4049/jimmunol.175.9.5591CrossRefPubMed
21.
go back to reference Angiari S, Rossi B, Piccio L, Zinselmeyer BH, Budui S, Zenaro E, Della Bianca V, Bach SD, Scarpini E, Bolomini-Vittori M, Piacentino G, Dusi S, Laudanna C, Cross AH, Miller MJ, Constantin G: Regulatory T cells suppress the late phase of the immune response in lymph nodes through P-selectin glycoprotein ligand-1. J Immunol 2013, 191: 5489–5500. doi:10.4049/jimmunol.1301235 10.4049/jimmunol.1301235CrossRefPubMedPubMedCentral Angiari S, Rossi B, Piccio L, Zinselmeyer BH, Budui S, Zenaro E, Della Bianca V, Bach SD, Scarpini E, Bolomini-Vittori M, Piacentino G, Dusi S, Laudanna C, Cross AH, Miller MJ, Constantin G: Regulatory T cells suppress the late phase of the immune response in lymph nodes through P-selectin glycoprotein ligand-1. J Immunol 2013, 191: 5489–5500. doi:10.4049/jimmunol.1301235 10.4049/jimmunol.1301235CrossRefPubMedPubMedCentral
22.
go back to reference Tadokoro CE, Shakhar G, Shen SQ, Ding Y, Lino AC, Maraver A, Lafaille JJ, Dustin ML: Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J Exp Med 2006, 203: 505–511. 10.1084/jem.20050783CrossRefPubMedPubMedCentral Tadokoro CE, Shakhar G, Shen SQ, Ding Y, Lino AC, Maraver A, Lafaille JJ, Dustin ML: Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J Exp Med 2006, 203: 505–511. 10.1084/jem.20050783CrossRefPubMedPubMedCentral
23.
go back to reference Tang QZ, Adams JY, Tooley AJ, Bi MY, Fife BT, Serra P, Santamaria P, Locksley RM, Krummel MF, Bluestone JA: Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 2006, 7: 83–92. 10.1038/ni1289CrossRefPubMed Tang QZ, Adams JY, Tooley AJ, Bi MY, Fife BT, Serra P, Santamaria P, Locksley RM, Krummel MF, Bluestone JA: Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 2006, 7: 83–92. 10.1038/ni1289CrossRefPubMed
24.
go back to reference Onishi Y, Fehérvári Z, Yamaguchi T, Sakaguchi AY: Foxp3 + natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A 2008, 105: 10113–10118. 10.1073/pnas.0711106105CrossRefPubMedPubMedCentral Onishi Y, Fehérvári Z, Yamaguchi T, Sakaguchi AY: Foxp3 + natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A 2008, 105: 10113–10118. 10.1073/pnas.0711106105CrossRefPubMedPubMedCentral
25.
go back to reference Mempel TR, Pittet MJ, Khazaie K, Weninger W, Weissleder R, von Boehmer H, von Andrian UH: Regulatory T Cells Reversibly Suppress Cytotoxic T Cell Function Independent of Effector Differentiation. Immunity 2006, 25: 129–141. http://dx.doi.org/10.1016/j.immuni.2006.04.015 10.1016/j.immuni.2006.04.015CrossRefPubMed Mempel TR, Pittet MJ, Khazaie K, Weninger W, Weissleder R, von Boehmer H, von Andrian UH: Regulatory T Cells Reversibly Suppress Cytotoxic T Cell Function Independent of Effector Differentiation. Immunity 2006, 25: 129–141. http://​dx.​doi.​org/​10.​1016/​j.​immuni.​2006.​04.​015 10.1016/j.immuni.2006.04.015CrossRefPubMed
26.
go back to reference Domingues HS, Mues M, Lassmann H, Wekerle H, Krishnamoorthy G (2010) Functional and pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. PLoS One 5:e15531. doi:10.1371/journal.pone.0015531 Domingues HS, Mues M, Lassmann H, Wekerle H, Krishnamoorthy G (2010) Functional and pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. PLoS One 5:e15531. doi:10.1371/journal.pone.0015531
27.
go back to reference Berer K, Mues M, Koutroulos M, Al Rasbi Z, Boziki M, Johner C, Wekerle H, Krishnamoorthy G: Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011, 479: 538–541. doi:10.1038/nature10554 10.1038/nature10554CrossRefPubMed Berer K, Mues M, Koutroulos M, Al Rasbi Z, Boziki M, Johner C, Wekerle H, Krishnamoorthy G: Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011, 479: 538–541. doi:10.1038/nature10554 10.1038/nature10554CrossRefPubMed
28.
go back to reference Mues M, Bartholomaus I, Thestrup T, Griesbeck O, Wekerle H, Kawakami N, Krishnamoorthy G: Real-time in vivo analysis of T cell activation in the central nervous system using a genetically encoded calcium indicator. Nat Med 2013, 19: 778–783. doi:10.1038/nm.3180 10.1038/nm.3180CrossRefPubMed Mues M, Bartholomaus I, Thestrup T, Griesbeck O, Wekerle H, Kawakami N, Krishnamoorthy G: Real-time in vivo analysis of T cell activation in the central nervous system using a genetically encoded calcium indicator. Nat Med 2013, 19: 778–783. doi:10.1038/nm.3180 10.1038/nm.3180CrossRefPubMed
29.
go back to reference Pesic M, Bartholomaus I, Kyratsous NI, Heissmeyer V, Wekerle H, Kawakami N: 2-photon imaging of phagocyte-mediated T cell activation in the CNS. J Clin Invest 2013, 123: 1192–1201. doi:10.1172/JCI67233 10.1172/JCI67233CrossRefPubMedPubMedCentral Pesic M, Bartholomaus I, Kyratsous NI, Heissmeyer V, Wekerle H, Kawakami N: 2-photon imaging of phagocyte-mediated T cell activation in the CNS. J Clin Invest 2013, 123: 1192–1201. doi:10.1172/JCI67233 10.1172/JCI67233CrossRefPubMedPubMedCentral
30.
go back to reference Godfrey VL, Wilkinson JE, Rinchik EM, Russell LB: Fatal lymphoreticular disease in the scurfy ( sf ) mouse requires T cells that mature in the sf thymic environment: Potential model for thymic education. Proc Natl Acad Sci U S A 1991, 88: 5528–5532. 10.1073/pnas.88.13.5528CrossRefPubMedPubMedCentral Godfrey VL, Wilkinson JE, Rinchik EM, Russell LB: Fatal lymphoreticular disease in the scurfy ( sf ) mouse requires T cells that mature in the sf thymic environment: Potential model for thymic education. Proc Natl Acad Sci U S A 1991, 88: 5528–5532. 10.1073/pnas.88.13.5528CrossRefPubMedPubMedCentral
31.
go back to reference Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ: CD4 + CD25 + Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 2007, 8: 1353–1362. doi:10.1038/ni1536 10.1038/ni1536CrossRefPubMed Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ: CD4 + CD25 + Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 2007, 8: 1353–1362. doi:10.1038/ni1536 10.1038/ni1536CrossRefPubMed
32.
go back to reference Pittet MJ, Mempel TR: Regulation of T-cell migration and effector functions: insights from in vivo imaging studies. Immunol Rev 2008, 221: 107–129. 10.1111/j.1600-065X.2008.00584.xCrossRefPubMed Pittet MJ, Mempel TR: Regulation of T-cell migration and effector functions: insights from in vivo imaging studies. Immunol Rev 2008, 221: 107–129. 10.1111/j.1600-065X.2008.00584.xCrossRefPubMed
Metadata
Title
Treg cells mediate recovery from EAE by controlling effector T cell proliferation and motility in the CNS
Authors
Michail Koutrolos
Kerstin Berer
Naoto Kawakami
Hartmut Wekerle
Gurumoorthy Krishnamoorthy
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2014
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-014-0163-1

Other articles of this Issue 1/2014

Acta Neuropathologica Communications 1/2014 Go to the issue