Skip to main content
Top
Published in: Molecular and Cellular Pediatrics 1/2022

Open Access 01-12-2022 | Review

Molecular mechanisms of Shigella effector proteins: a common pathogen among diarrheic pediatric population

Authors: Ahmad Nasser, Mehrdad Mosadegh, Taher Azimi, Aref Shariati

Published in: Molecular and Cellular Pediatrics | Issue 1/2022

Login to get access

Abstract

Different gastrointestinal pathogens cause diarrhea which is a very common problem in children aged under 5 years. Among bacterial pathogens, Shigella is one of the main causes of diarrhea among children, and it accounts for approximately 11% of all deaths among children aged under 5 years. The case-fatality rates for Shigella among the infants and children aged 1 to 4 years are 13.9% and 9.4%, respectively. Shigella uses unique effector proteins to modulate intracellular pathways. Shigella cannot invade epithelial cells on the apical site; therefore, it needs to pass epithelium through other cells rather than the epithelial cell. After passing epithelium, macrophage swallows Shigella, and the latter should prepare itself to exhibit at least two types of responses: (I) escaping phagocyte and (II) mediating invasion of and injury to the recurrent PMN. The presence of PMN and invitation to a greater degree resulted in gut membrane injuries and greater bacterial penetration. Infiltration of Shigella to the basolateral space mediates (A) cell attachment, (B) cell entry, (C) evasion of autophagy recognition, (D) vacuole formation and and vacuole rapture, (E) intracellular life, (F) Shiga toxin, and (G) immune response. In this review, an attempt is made to explain the role of each factor in Shigella infection.
Literature
1.
go back to reference Tickell KD et al (2017) Identification and management of Shigella infection in children with diarrhoea: a systematic review and meta-analysis. Lancet Glob Health 5(12):e1235–e1248PubMedPubMedCentralCrossRef Tickell KD et al (2017) Identification and management of Shigella infection in children with diarrhoea: a systematic review and meta-analysis. Lancet Glob Health 5(12):e1235–e1248PubMedPubMedCentralCrossRef
2.
go back to reference Ashkenazi S (2004) Shigella infections in children: new insights. In: Seminars in pediatric infectious diseases. WBSaunders 5(12):246–252 Ashkenazi S (2004) Shigella infections in children: new insights. In: Seminars in pediatric infectious diseases. WBSaunders 5(12):246–252
3.
go back to reference Gharpure R et al (2021) Disparities in incidence and severity of Shigella Infections among children—Foodborne Diseases Active Surveillance Network (FoodNet), 2009-2018. J Pediatr Infect Dis Soc 10(7):782–788CrossRef Gharpure R et al (2021) Disparities in incidence and severity of Shigella Infections among children—Foodborne Diseases Active Surveillance Network (FoodNet), 2009-2018. J Pediatr Infect Dis Soc 10(7):782–788CrossRef
4.
go back to reference Cheun H-I et al (2010) Infection status of hospitalized diarrheal patients with gastrointestinal protozoa, bacteria, and viruses in the Republic of Korea. Korean J Parasitol 48(2):113PubMedPubMedCentralCrossRef Cheun H-I et al (2010) Infection status of hospitalized diarrheal patients with gastrointestinal protozoa, bacteria, and viruses in the Republic of Korea. Korean J Parasitol 48(2):113PubMedPubMedCentralCrossRef
5.
go back to reference Hawash YA, Ismail KA, Almehmadi M (2017) High frequency of enteric protozoan, viral, and bacterial potential pathogens in community-acquired acute diarrheal episodes: evidence based on results of luminex gastrointestinal pathogen panel assay. Korean J Parasitol 55(5):513PubMedPubMedCentralCrossRef Hawash YA, Ismail KA, Almehmadi M (2017) High frequency of enteric protozoan, viral, and bacterial potential pathogens in community-acquired acute diarrheal episodes: evidence based on results of luminex gastrointestinal pathogen panel assay. Korean J Parasitol 55(5):513PubMedPubMedCentralCrossRef
6.
go back to reference Kotloff KL et al (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 77(8):651–666PubMedPubMedCentral Kotloff KL et al (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 77(8):651–666PubMedPubMedCentral
7.
go back to reference Ud-Din A, Wahid S (2014) Relationship among Shigella spp. and enteroinvasive Escherichia coli (EIEC) and their differentiation. Braz. J Microbiol 45(4):1131–1138 Ud-Din A, Wahid S (2014) Relationship among Shigella spp. and enteroinvasive Escherichia coli (EIEC) and their differentiation. Braz. J Microbiol 45(4):1131–1138
8.
go back to reference Pormohammad A et al (2019) Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: a systematic review and meta-analysis. Infect Drug Resist 12:1181–1197 Pormohammad A et al (2019) Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: a systematic review and meta-analysis. Infect Drug Resist 12:1181–1197
9.
go back to reference Zhu Z et al (2021) Virulence factors and molecular characteristics of Shigella flexneri isolated from calves with diarrhea. BMC Microbiol 21(1):1–12CrossRef Zhu Z et al (2021) Virulence factors and molecular characteristics of Shigella flexneri isolated from calves with diarrhea. BMC Microbiol 21(1):1–12CrossRef
10.
go back to reference Alemu A et al (2019) Prevalence, associated risk factors and antimicrobial susceptibility patterns of Shigella infections among diarrheic pediatric population attending at Gondar town healthcare institutions, northwest Ethiopia. Trop Dis Travel Med Vaccines 5(1):1–8CrossRef Alemu A et al (2019) Prevalence, associated risk factors and antimicrobial susceptibility patterns of Shigella infections among diarrheic pediatric population attending at Gondar town healthcare institutions, northwest Ethiopia. Trop Dis Travel Med Vaccines 5(1):1–8CrossRef
11.
go back to reference Khalil IA et al (2018) Morbidity and mortality due to Shigella and enterotoxigenic Escherichia coli diarrhoea: the Global Burden of Disease Study 1990–2016. Lancet Infect Dis 18(11):1229–1240PubMedPubMedCentralCrossRef Khalil IA et al (2018) Morbidity and mortality due to Shigella and enterotoxigenic Escherichia coli diarrhoea: the Global Burden of Disease Study 1990–2016. Lancet Infect Dis 18(11):1229–1240PubMedPubMedCentralCrossRef
12.
go back to reference Das JK et al (2013) Antibiotics for the treatment of cholera, Shigella and Cryptosporidium in children. BMC Public Health 13(3):1–9 Das JK et al (2013) Antibiotics for the treatment of cholera, Shigella and Cryptosporidium in children. BMC Public Health 13(3):1–9
13.
14.
go back to reference Kaminski RW, Oaks EV (2009) Inactivated and subunit vaccines to prevent shigellosis. Expert Rev Vaccines 8(12):1693–1704PubMedCrossRef Kaminski RW, Oaks EV (2009) Inactivated and subunit vaccines to prevent shigellosis. Expert Rev Vaccines 8(12):1693–1704PubMedCrossRef
15.
go back to reference Man AL, Prieto-Garcia ME, Nicoletti C (2004) Improving M cell mediated transport across mucosal barriers: do certain bacteria hold the keys? Immunology 113(1):15–22PubMedPubMedCentralCrossRef Man AL, Prieto-Garcia ME, Nicoletti C (2004) Improving M cell mediated transport across mucosal barriers: do certain bacteria hold the keys? Immunology 113(1):15–22PubMedPubMedCentralCrossRef
16.
go back to reference Ashida H, Mimuro H, Sasakawa C (2015) Shigella manipulates host immune responses by delivering effector proteins with specific roles. Front Immunol 6:219PubMedPubMedCentralCrossRef Ashida H, Mimuro H, Sasakawa C (2015) Shigella manipulates host immune responses by delivering effector proteins with specific roles. Front Immunol 6:219PubMedPubMedCentralCrossRef
17.
go back to reference Costa TR et al (2015) Secretion systems in gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13(6):343–359PubMedCrossRef Costa TR et al (2015) Secretion systems in gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13(6):343–359PubMedCrossRef
18.
go back to reference Delepelaire P (2004) Type I secretion in gram-negative bacteria. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 1694(1-3):149–161 Delepelaire P (2004) Type I secretion in gram-negative bacteria. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 1694(1-3):149–161
19.
go back to reference Thomas S, Holland IB, Schmitt L (2014) The type 1 secretion pathway—the hemolysin system and beyond. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 1843(8):1629–1641 Thomas S, Holland IB, Schmitt L (2014) The type 1 secretion pathway—the hemolysin system and beyond. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 1843(8):1629–1641
20.
go back to reference Green ER, Mecsas J (2016) Bacterial secretion systems: an overview. Microbiol Spect 4(1):4.1. 13CrossRef Green ER, Mecsas J (2016) Bacterial secretion systems: an overview. Microbiol Spect 4(1):4.1. 13CrossRef
21.
go back to reference Büttner D (2012) Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant-and animal-pathogenic bacteria. Microbiol Mol Biol Rev 76(2):262–310PubMedPubMedCentralCrossRef Büttner D (2012) Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant-and animal-pathogenic bacteria. Microbiol Mol Biol Rev 76(2):262–310PubMedPubMedCentralCrossRef
24.
go back to reference Smirnova MG, Birchall JP, Pearson JPJC (2000) TNF-alpha in the regulation of MUC5AC secretion: some aspects of cytokine-induced mucin hypersecretion on the in vitro model. Cytokine 12(11):1732–1736PubMedCrossRef Smirnova MG, Birchall JP, Pearson JPJC (2000) TNF-alpha in the regulation of MUC5AC secretion: some aspects of cytokine-induced mucin hypersecretion on the in vitro model. Cytokine 12(11):1732–1736PubMedCrossRef
25.
go back to reference Enss M-L et al (2000) Proinflammatory cytokines trigger MUC gene expression and mucin release in the intestinal cancer cell line LS180. Inflamm Res 49(4):162–169PubMedCrossRef Enss M-L et al (2000) Proinflammatory cytokines trigger MUC gene expression and mucin release in the intestinal cancer cell line LS180. Inflamm Res 49(4):162–169PubMedCrossRef
26.
go back to reference Sperandio B et al (2013) Virulent Shigella flexneri affects secretion, expression, and glycosylation of gel-forming mucins in mucus-producing cells. Infect Immun 81(10):3632–3643PubMedPubMedCentralCrossRef Sperandio B et al (2013) Virulent Shigella flexneri affects secretion, expression, and glycosylation of gel-forming mucins in mucus-producing cells. Infect Immun 81(10):3632–3643PubMedPubMedCentralCrossRef
27.
go back to reference Corr SC et al (2008) M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol 52(1):2–12PubMedCrossRef Corr SC et al (2008) M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol 52(1):2–12PubMedCrossRef
28.
go back to reference Perdomo O et al (1994) Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis. J Exp Med 180(4):1307–1319PubMedCrossRef Perdomo O et al (1994) Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis. J Exp Med 180(4):1307–1319PubMedCrossRef
30.
go back to reference Zychlinsky A et al (1994) Interleukin 1 is released by murine macrophages during apoptosis induced by Shigella flexneri. J Clin Invest 94(3):1328–1332PubMedPubMedCentralCrossRef Zychlinsky A et al (1994) Interleukin 1 is released by murine macrophages during apoptosis induced by Shigella flexneri. J Clin Invest 94(3):1328–1332PubMedPubMedCentralCrossRef
31.
go back to reference Groeger S, Meyle J (2019) Oral mucosal epithelial cells. Front Immunol 10:210 Groeger S, Meyle J (2019) Oral mucosal epithelial cells. Front Immunol 10:210
33.
go back to reference Phalipon A, Sansonetti PJ, c. biology (2007) Shigella’s ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunol Cell Biol 85(2):119–129PubMedCrossRef Phalipon A, Sansonetti PJ, c. biology (2007) Shigella’s ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunol Cell Biol 85(2):119–129PubMedCrossRef
34.
go back to reference Shin WG et al (2018) Infection of human intestinal epithelial cells by invasive bacteria activates NF-κB and increases ICAM-1 expression through NOD1. Korean J Intern Med 33(1):81PubMedCrossRef Shin WG et al (2018) Infection of human intestinal epithelial cells by invasive bacteria activates NF-κB and increases ICAM-1 expression through NOD1. Korean J Intern Med 33(1):81PubMedCrossRef
36.
go back to reference Köhler H et al (2002) Shigella flexneri interactions with the basolateral membrane domain of polarized model intestinal epithelium: role of lipopolysaccharide in cell invasion and in activation of the mitogen-activated protein kinase ERK. Infect Immun 70(3):1150–1158PubMedPubMedCentralCrossRef Köhler H et al (2002) Shigella flexneri interactions with the basolateral membrane domain of polarized model intestinal epithelium: role of lipopolysaccharide in cell invasion and in activation of the mitogen-activated protein kinase ERK. Infect Immun 70(3):1150–1158PubMedPubMedCentralCrossRef
37.
38.
go back to reference Gaudet RG et al (2017) Innate recognition of intracellular bacterial growth is driven by the TIFA-dependent cytosolic surveillance pathway. Cell Rep 19(7):1418–1430PubMedCrossRef Gaudet RG et al (2017) Innate recognition of intracellular bacterial growth is driven by the TIFA-dependent cytosolic surveillance pathway. Cell Rep 19(7):1418–1430PubMedCrossRef
40.
go back to reference Pinaud L et al (2017) Injection of T3SS effectors not resulting in invasion is the main targeting mechanism of Shigella toward human lymphocytes. Proc Natl Acad Sci 114(37):9954–9959PubMedPubMedCentralCrossRef Pinaud L et al (2017) Injection of T3SS effectors not resulting in invasion is the main targeting mechanism of Shigella toward human lymphocytes. Proc Natl Acad Sci 114(37):9954–9959PubMedPubMedCentralCrossRef
41.
go back to reference Foletta VC, Segal DH, Cohen DR (1998) Transcriptional regulation in the immune system: all roads lead to AP-1. J Leukoc Biol 63(2):139–152PubMedCrossRef Foletta VC, Segal DH, Cohen DR (1998) Transcriptional regulation in the immune system: all roads lead to AP-1. J Leukoc Biol 63(2):139–152PubMedCrossRef
42.
go back to reference Paciello I et al (2013) Intracellular Shigella remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proc Natl Acad Sci 110(46):E4345–E4354PubMedPubMedCentralCrossRef Paciello I et al (2013) Intracellular Shigella remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proc Natl Acad Sci 110(46):E4345–E4354PubMedPubMedCentralCrossRef
43.
go back to reference Zumsteg AB et al (2014) IcsA is a Shigella flexneri adhesin regulated by the type III secretion system and required for pathogenesis. Cell Host Microbe 15(4):435–445CrossRef Zumsteg AB et al (2014) IcsA is a Shigella flexneri adhesin regulated by the type III secretion system and required for pathogenesis. Cell Host Microbe 15(4):435–445CrossRef
44.
45.
go back to reference Brandon LD et al (2003) IcsA, a polarly localized autotransporter with an atypical signal peptide, uses the Sec apparatus for secretion, although the Sec apparatus is circumferentially distributed. Mol Microbiol 50(1):45–60PubMedCrossRef Brandon LD et al (2003) IcsA, a polarly localized autotransporter with an atypical signal peptide, uses the Sec apparatus for secretion, although the Sec apparatus is circumferentially distributed. Mol Microbiol 50(1):45–60PubMedCrossRef
46.
go back to reference Scribano D et al (2014) Polar localization of PhoN2, a periplasmic virulence-associated factor of Shigella flexneri, is required for proper IcsA exposition at the old bacterial pole. PLoS One 9(2):e90230 Scribano D et al (2014) Polar localization of PhoN2, a periplasmic virulence-associated factor of Shigella flexneri, is required for proper IcsA exposition at the old bacterial pole. PLoS One 9(2):e90230
47.
go back to reference Pope LM et al (1995) Increased protein secretion and adherence to HeLa cells by Shigella spp. following growth in the presence of bile salts. Infect Immun 63(9):3642–3648PubMedPubMedCentralCrossRef Pope LM et al (1995) Increased protein secretion and adherence to HeLa cells by Shigella spp. following growth in the presence of bile salts. Infect Immun 63(9):3642–3648PubMedPubMedCentralCrossRef
48.
go back to reference Faherty CS et al (2012) Shigella flexneri effectors OspE1 and OspE2 mediate induced adherence to the colonic epithelium following bile salts exposure. Mol Microbiol 85(1):107–121PubMedPubMedCentralCrossRef Faherty CS et al (2012) Shigella flexneri effectors OspE1 and OspE2 mediate induced adherence to the colonic epithelium following bile salts exposure. Mol Microbiol 85(1):107–121PubMedPubMedCentralCrossRef
49.
go back to reference Kim M et al (2009) Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment. Nature. 459(7246):578–582PubMedCrossRef Kim M et al (2009) Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment. Nature. 459(7246):578–582PubMedCrossRef
50.
go back to reference Nickerson KP et al (2017) Analysis of Shigella flexneri resistance, biofilm formation, and transcriptional profile in response to bile salts. Infect Immun 85(6):e01067–e01016PubMedPubMedCentralCrossRef Nickerson KP et al (2017) Analysis of Shigella flexneri resistance, biofilm formation, and transcriptional profile in response to bile salts. Infect Immun 85(6):e01067–e01016PubMedPubMedCentralCrossRef
51.
go back to reference Sharahi JY et al (2019) Advanced strategies for combating bacterial biofilms. J Cell Physiol 234(9):14689–14708CrossRef Sharahi JY et al (2019) Advanced strategies for combating bacterial biofilms. J Cell Physiol 234(9):14689–14708CrossRef
52.
go back to reference Egile C et al (1999) Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell Biol 146(6):1319–1332PubMedPubMedCentralCrossRef Egile C et al (1999) Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell Biol 146(6):1319–1332PubMedPubMedCentralCrossRef
53.
go back to reference Fawcett J, Pawson TJS (2000) N-WASP tegulation--the sting in the tail. Science. 290(5492):725–726PubMedCrossRef Fawcett J, Pawson TJS (2000) N-WASP tegulation--the sting in the tail. Science. 290(5492):725–726PubMedCrossRef
54.
go back to reference Carlier M-F et al (1999) Signalling to actin: the Cdc42-N-WASP-Arp2/3 connection. Chem Biol 6(9):R235–R240PubMedCrossRef Carlier M-F et al (1999) Signalling to actin: the Cdc42-N-WASP-Arp2/3 connection. Chem Biol 6(9):R235–R240PubMedCrossRef
55.
go back to reference Suzuki T et al (2002) Neural Wiskott–Aldrich syndrome protein (N-WASP) is the specific ligand for Shigella VirG among the WASP family and determines the host cell type allowing actin-based spreading. Cell Microbiol 4(4):223–233PubMedCrossRef Suzuki T et al (2002) Neural Wiskott–Aldrich syndrome protein (N-WASP) is the specific ligand for Shigella VirG among the WASP family and determines the host cell type allowing actin-based spreading. Cell Microbiol 4(4):223–233PubMedCrossRef
56.
go back to reference Suzuki T, Saga S, Sasakawa C (1996) Functional analysis of Shigella VirG domains essential for interaction with vinculin and actin-based motility. J Biol Chem 271(36):21878–21885PubMedCrossRef Suzuki T, Saga S, Sasakawa C (1996) Functional analysis of Shigella VirG domains essential for interaction with vinculin and actin-based motility. J Biol Chem 271(36):21878–21885PubMedCrossRef
57.
go back to reference Henderson IR et al (1999) Characterization of Pic, a secreted protease of Shigella flexneri and Enteroaggregative Escherichia coli. Infect Immun 67(11):5587–5596PubMedPubMedCentralCrossRef Henderson IR et al (1999) Characterization of Pic, a secreted protease of Shigella flexneri and Enteroaggregative Escherichia coli. Infect Immun 67(11):5587–5596PubMedPubMedCentralCrossRef
59.
go back to reference Ruiz-Perez F et al (2011) Serine protease autotransporters from Shigella flexneri and pathogenic Escherichia coli target a broad range of leukocyte glycoproteins. Proc Natl Acad Sci 108(31):12881–12886PubMedPubMedCentralCrossRef Ruiz-Perez F et al (2011) Serine protease autotransporters from Shigella flexneri and pathogenic Escherichia coli target a broad range of leukocyte glycoproteins. Proc Natl Acad Sci 108(31):12881–12886PubMedPubMedCentralCrossRef
60.
go back to reference Gutierrez-Jimenez J, Arciniega I, Navarro-García F (2008) The serine protease motif of Pic mediates a dose-dependent mucolytic activity after binding to sugar constituents of the mucin substrate. Microb Pathog 45(2):115–123PubMedCrossRef Gutierrez-Jimenez J, Arciniega I, Navarro-García F (2008) The serine protease motif of Pic mediates a dose-dependent mucolytic activity after binding to sugar constituents of the mucin substrate. Microb Pathog 45(2):115–123PubMedCrossRef
62.
go back to reference Harrington SM et al (2009) The Pic protease of enteroaggregative Escherichia coli promotes intestinal colonization and growth in the presence of mucin. Infect Immun 77(6):2465–2473PubMedPubMedCentralCrossRef Harrington SM et al (2009) The Pic protease of enteroaggregative Escherichia coli promotes intestinal colonization and growth in the presence of mucin. Infect Immun 77(6):2465–2473PubMedPubMedCentralCrossRef
63.
go back to reference Veenendaal AK et al (2007) The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol Microbiol 63(6):1719–1730PubMedCrossRef Veenendaal AK et al (2007) The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol Microbiol 63(6):1719–1730PubMedCrossRef
64.
go back to reference Lafont F et al (2002) Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44–IpaB interaction. EMBO J 21(17):4449–4457PubMedPubMedCentralCrossRef Lafont F et al (2002) Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44–IpaB interaction. EMBO J 21(17):4449–4457PubMedPubMedCentralCrossRef
65.
go back to reference Epler CR et al (2012) Ultrastructural analysis of IpaD at the tip of the nascent MxiH type III secretion apparatus of Shigella flexneri. J Mol Biol 420(1-2):29–39PubMedPubMedCentralCrossRef Epler CR et al (2012) Ultrastructural analysis of IpaD at the tip of the nascent MxiH type III secretion apparatus of Shigella flexneri. J Mol Biol 420(1-2):29–39PubMedPubMedCentralCrossRef
66.
go back to reference Dickenson NE et al (2011) Conformational changes in IpaD from Shigella flexneri upon binding bile salts provide insight into the second step of type III secretion. Biochemistry. 50(2):172–180PubMedCrossRef Dickenson NE et al (2011) Conformational changes in IpaD from Shigella flexneri upon binding bile salts provide insight into the second step of type III secretion. Biochemistry. 50(2):172–180PubMedCrossRef
67.
go back to reference Martinez-Argudo I, Blocker AJ (2010) The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors. Mol Microbiol 78(6):1365–1378PubMedPubMedCentralCrossRef Martinez-Argudo I, Blocker AJ (2010) The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors. Mol Microbiol 78(6):1365–1378PubMedPubMedCentralCrossRef
68.
go back to reference Epler CR et al (2009) Liposomes recruit IpaC to the Shigella flexneri type III secretion apparatus needle as a final step in secretion induction. Infect Immun 77(7):2754–2761PubMedPubMedCentralCrossRef Epler CR et al (2009) Liposomes recruit IpaC to the Shigella flexneri type III secretion apparatus needle as a final step in secretion induction. Infect Immun 77(7):2754–2761PubMedPubMedCentralCrossRef
69.
go back to reference Yang Y et al (2019) Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 10(2):1–11CrossRef Yang Y et al (2019) Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 10(2):1–11CrossRef
70.
go back to reference Senerovic L et al (2012) Spontaneous formation of IpaB ion channels in host cell membranes reveals how Shigella induces pyroptosis in macrophages. Cell Death Dis 3(9):e384–e384PubMedPubMedCentralCrossRef Senerovic L et al (2012) Spontaneous formation of IpaB ion channels in host cell membranes reveals how Shigella induces pyroptosis in macrophages. Cell Death Dis 3(9):e384–e384PubMedPubMedCentralCrossRef
71.
go back to reference Skoudy A et al (2000) CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells. Cell Microbiol 2(1):19–33PubMedCrossRef Skoudy A et al (2000) CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells. Cell Microbiol 2(1):19–33PubMedCrossRef
72.
go back to reference Mounier J et al (2009) The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells. PLoS Pathog 5(1):e1000271PubMedPubMedCentralCrossRef Mounier J et al (2009) The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells. PLoS Pathog 5(1):e1000271PubMedPubMedCentralCrossRef
73.
go back to reference Frame MC (2002) Src in cancer: deregulation and consequences for cell behaviour. Biochimica et Biophysica Acta (BBA)-Reviews on. Cancer. 1602(2):114–130 Frame MC (2002) Src in cancer: deregulation and consequences for cell behaviour. Biochimica et Biophysica Acta (BBA)-Reviews on. Cancer. 1602(2):114–130
74.
75.
go back to reference Lokareddy RK et al (2010) Combination of two separate binding domains defines stoichiometry between type III secretion system chaperone IpgC and translocator protein IpaB. J Biol Chem 285(51):39965–39975PubMedPubMedCentralCrossRef Lokareddy RK et al (2010) Combination of two separate binding domains defines stoichiometry between type III secretion system chaperone IpgC and translocator protein IpaB. J Biol Chem 285(51):39965–39975PubMedPubMedCentralCrossRef
76.
go back to reference Carayol N, Van Nhieu GT (2013) Tips and tricks about Shigella invasion of epithelial cells. Curr Opin Microbiol 16(1):32–37PubMedCrossRef Carayol N, Van Nhieu GT (2013) Tips and tricks about Shigella invasion of epithelial cells. Curr Opin Microbiol 16(1):32–37PubMedCrossRef
78.
go back to reference Klapholz B, Brown NH (2017) Talin–the master of integrin adhesions. J Cell Sci 130(15):2435–2446PubMed Klapholz B, Brown NH (2017) Talin–the master of integrin adhesions. J Cell Sci 130(15):2435–2446PubMed
79.
81.
go back to reference Valencia-Gallardo C et al (2019) Shigella IpaA binding to talin stimulates filopodial capture and cell adhesion. Cell Rep 26(4):921–932. e6PubMedCrossRef Valencia-Gallardo C et al (2019) Shigella IpaA binding to talin stimulates filopodial capture and cell adhesion. Cell Rep 26(4):921–932. e6PubMedCrossRef
82.
84.
go back to reference Travassos LH et al (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11(1):55–62PubMedCrossRef Travassos LH et al (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11(1):55–62PubMedCrossRef
86.
go back to reference Ogawa M et al (2003) IcsB, secreted via the type III secretion system, is chaperoned by IpgA and required at the post-invasion stage of Shigella pathogenicity. Mol Microbiol 48(4):913–931PubMedCrossRef Ogawa M et al (2003) IcsB, secreted via the type III secretion system, is chaperoned by IpgA and required at the post-invasion stage of Shigella pathogenicity. Mol Microbiol 48(4):913–931PubMedCrossRef
87.
88.
go back to reference Ho H-YH et al (2004) Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell. 118(2):203–216PubMedCrossRef Ho H-YH et al (2004) Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell. 118(2):203–216PubMedCrossRef
89.
go back to reference Ogawa M et al (2011) A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 9(5):376–389PubMedCrossRef Ogawa M et al (2011) A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 9(5):376–389PubMedCrossRef
90.
go back to reference Campbell-Valois F-X et al (2015) Escape of actively secreting Shigella flexneri from ATG8/LC3-positive vacuoles formed during cell-to-cell spread is facilitated by IcsB and VirA. MBio. 6(3):e02567–e02514PubMedPubMedCentralCrossRef Campbell-Valois F-X et al (2015) Escape of actively secreting Shigella flexneri from ATG8/LC3-positive vacuoles formed during cell-to-cell spread is facilitated by IcsB and VirA. MBio. 6(3):e02567–e02514PubMedPubMedCentralCrossRef
91.
go back to reference Niebuhr K et al (2002) Conversion of PtdIns (4, 5) P2 into PtdIns (5) P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J 21(19):5069–5078PubMedPubMedCentralCrossRef Niebuhr K et al (2002) Conversion of PtdIns (4, 5) P2 into PtdIns (5) P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J 21(19):5069–5078PubMedPubMedCentralCrossRef
93.
go back to reference Ramel D et al (2011) Shigella flexneri infection generates the lipid PI5P to alter endocytosis and prevent termination of EGFR signaling. Sci Signal 4(191):ra61PubMedCrossRef Ramel D et al (2011) Shigella flexneri infection generates the lipid PI5P to alter endocytosis and prevent termination of EGFR signaling. Sci Signal 4(191):ra61PubMedCrossRef
94.
go back to reference Boal F et al (2015) TOM1 is a PI5P effector involved in the regulation of endosomal maturation. J Cell Sci 128(4):815–827PubMed Boal F et al (2015) TOM1 is a PI5P effector involved in the regulation of endosomal maturation. J Cell Sci 128(4):815–827PubMed
95.
96.
go back to reference Janmey PA, Lindberg UJNRMCB (2004) Cytoskeletal regulation: rich in lipids. Nat Rev Mol Cell Biol 5(8):658–666PubMedCrossRef Janmey PA, Lindberg UJNRMCB (2004) Cytoskeletal regulation: rich in lipids. Nat Rev Mol Cell Biol 5(8):658–666PubMedCrossRef
97.
go back to reference Nasser A et al (2019) Staphylococcus aureus versus neutrophil: scrutiny of ancient combat. Microb Pathog 131:259–269PubMedCrossRef Nasser A et al (2019) Staphylococcus aureus versus neutrophil: scrutiny of ancient combat. Microb Pathog 131:259–269PubMedCrossRef
99.
go back to reference Mellouk N et al (2014) Shigella subverts the host recycling compartment to rupture its vacuole. Cell Host Microbe 16(4):517–530PubMedCrossRef Mellouk N et al (2014) Shigella subverts the host recycling compartment to rupture its vacuole. Cell Host Microbe 16(4):517–530PubMedCrossRef
100.
go back to reference Konradt C et al (2011) The Shigella flexneri type three secretion system effector IpgD inhibits T cell migration by manipulating host phosphoinositide metabolism. Cell Host Microbe 9(4):263–272PubMedCrossRef Konradt C et al (2011) The Shigella flexneri type three secretion system effector IpgD inhibits T cell migration by manipulating host phosphoinositide metabolism. Cell Host Microbe 9(4):263–272PubMedCrossRef
101.
go back to reference Boal F et al (2016) PI5P triggers ICAM-1 degradation in Shigella infected cells, thus dampening immune cell recruitment. Cell Rep 14(4):750–759PubMedCrossRef Boal F et al (2016) PI5P triggers ICAM-1 degradation in Shigella infected cells, thus dampening immune cell recruitment. Cell Rep 14(4):750–759PubMedCrossRef
102.
go back to reference Puhar A et al (2013) A Shigella effector dampens inflammation by regulating epithelial release of danger signal ATP through production of the lipid mediator PtdIns5P. Immunity. 39(6):1121–1131PubMedCrossRef Puhar A et al (2013) A Shigella effector dampens inflammation by regulating epithelial release of danger signal ATP through production of the lipid mediator PtdIns5P. Immunity. 39(6):1121–1131PubMedCrossRef
103.
go back to reference Van Nhieu GT et al (2003) Connexin-dependent inter-cellular communication increases invasion and dissemination of Shigella in epithelial cells. Nat Cell Biol 5(8):720–726CrossRef Van Nhieu GT et al (2003) Connexin-dependent inter-cellular communication increases invasion and dissemination of Shigella in epithelial cells. Nat Cell Biol 5(8):720–726CrossRef
104.
go back to reference Dong N et al (2012) Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses. Cell. 150(5):1029–1041PubMedCrossRef Dong N et al (2012) Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses. Cell. 150(5):1029–1041PubMedCrossRef
106.
go back to reference Van Nhieu GT et al (2013) Actin-based confinement of calcium responses during Shigella invasion. Nat Commun 4(1):1–10 Van Nhieu GT et al (2013) Actin-based confinement of calcium responses during Shigella invasion. Nat Commun 4(1):1–10
107.
go back to reference Calle Y et al (2006) Inhibition of calpain stabilises podosomes and impairs dendritic cell motility. J Cell Sci 119(11):2375–2385PubMedCrossRef Calle Y et al (2006) Inhibition of calpain stabilises podosomes and impairs dendritic cell motility. J Cell Sci 119(11):2375–2385PubMedCrossRef
108.
go back to reference Romero S et al (2011) ATP-mediated Erk1/2 activation stimulates bacterial capture by filopodia, which precedes Shigella invasion of epithelial cells. Cell Host Microbe 9(6):508–519PubMedPubMedCentralCrossRef Romero S et al (2011) ATP-mediated Erk1/2 activation stimulates bacterial capture by filopodia, which precedes Shigella invasion of epithelial cells. Cell Host Microbe 9(6):508–519PubMedPubMedCentralCrossRef
109.
go back to reference Bergounioux J et al (2012) Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium's epithelial niche. Cell Host Microbe 11(3):240–252PubMedCrossRef Bergounioux J et al (2012) Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium's epithelial niche. Cell Host Microbe 11(3):240–252PubMedCrossRef
110.
go back to reference Bonnet M, Van Nhieu GT, i. microbiology (2016) How Shigella utilizes Ca2+ jagged edge signals during invasion of epithelial cells. Front Cell Infect Microbiol 6:16PubMedPubMedCentralCrossRef Bonnet M, Van Nhieu GT, i. microbiology (2016) How Shigella utilizes Ca2+ jagged edge signals during invasion of epithelial cells. Front Cell Infect Microbiol 6:16PubMedPubMedCentralCrossRef
111.
go back to reference Sukumaran SK et al (2010) A soluble form of the pilus protein FimA targets the VDAC-hexokinase complex at mitochondria to suppress host cell apoptosis. Mol Cell 37(6):768–783PubMedCrossRef Sukumaran SK et al (2010) A soluble form of the pilus protein FimA targets the VDAC-hexokinase complex at mitochondria to suppress host cell apoptosis. Mol Cell 37(6):768–783PubMedCrossRef
113.
114.
115.
go back to reference Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11(9):633–643PubMedPubMedCentralCrossRef Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11(9):633–643PubMedPubMedCentralCrossRef
116.
go back to reference Handa Y et al (2007) Shigella IpgB1 promotes bacterial entry through the ELMO–Dock180 machinery. Nat Cell Biol 9(1):121–128PubMedCrossRef Handa Y et al (2007) Shigella IpgB1 promotes bacterial entry through the ELMO–Dock180 machinery. Nat Cell Biol 9(1):121–128PubMedCrossRef
117.
go back to reference Brugnera E et al (2002) Unconventional Rac-GEF activity is mediated through the Dock180–ELMO complex. Nat Cell Biol 4(8):574–582PubMedCrossRef Brugnera E et al (2002) Unconventional Rac-GEF activity is mediated through the Dock180–ELMO complex. Nat Cell Biol 4(8):574–582PubMedCrossRef
119.
go back to reference Alto NM et al (2006) Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124(1):133–145PubMedCrossRef Alto NM et al (2006) Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124(1):133–145PubMedCrossRef
120.
go back to reference Zheng YJTibs (2001) Dbl family guanine nucleotide exchange factors. Trends Biochem Sci 26(12):724–732PubMedCrossRef Zheng YJTibs (2001) Dbl family guanine nucleotide exchange factors. Trends Biochem Sci 26(12):724–732PubMedCrossRef
122.
go back to reference Wortham BW et al (2007) Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Adv Exp Med Biol 603:106–115PubMedCrossRef Wortham BW et al (2007) Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Adv Exp Med Biol 603:106–115PubMedCrossRef
123.
go back to reference Gevrekci AÖJWJoM, Biotechnology (2017) The roles of polyamines in microorganisms. World J Microbiol Biotechnol 33(11):204PubMedCrossRef Gevrekci AÖJWJoM, Biotechnology (2017) The roles of polyamines in microorganisms. World J Microbiol Biotechnol 33(11):204PubMedCrossRef
124.
go back to reference Jeong J-W et al (2018) Spermidine protects against oxidative stress in inflammation models using macrophages and zebrafish. Biomol Therapeut 26(2):146CrossRef Jeong J-W et al (2018) Spermidine protects against oxidative stress in inflammation models using macrophages and zebrafish. Biomol Therapeut 26(2):146CrossRef
125.
go back to reference Barbagallo M et al (2011) A new piece of the Shigella pathogenicity puzzle: spermidine accumulation by silencing of the speG gene [corrected]. PLoS One 6(11):e27226–e27226PubMedPubMedCentralCrossRef Barbagallo M et al (2011) A new piece of the Shigella pathogenicity puzzle: spermidine accumulation by silencing of the speG gene [corrected]. PLoS One 6(11):e27226–e27226PubMedPubMedCentralCrossRef
126.
go back to reference Kayagaki N et al (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341(6151):1246–1249PubMedCrossRef Kayagaki N et al (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341(6151):1246–1249PubMedCrossRef
127.
go back to reference Knodler LA et al (2014) Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16(2):249–256PubMedPubMedCentralCrossRef Knodler LA et al (2014) Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16(2):249–256PubMedPubMedCentralCrossRef
129.
130.
go back to reference Ashida H, Kim M, Sasakawa CJCm (2014) Manipulation of the host cell death pathway by Shigella. Cell Microbiol 16(12):1757–1766PubMedCrossRef Ashida H, Kim M, Sasakawa CJCm (2014) Manipulation of the host cell death pathway by Shigella. Cell Microbiol 16(12):1757–1766PubMedCrossRef
131.
go back to reference Carneiro LA et al (2009) Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells. Cell Host Microbe 5(2):123–136PubMedCrossRef Carneiro LA et al (2009) Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells. Cell Host Microbe 5(2):123–136PubMedCrossRef
132.
go back to reference Carneiro L et al (2008) Nod-like proteins in inflammation and disease. J Pathol: J Pathol Soc Great Britain Ireland 214(2):136–148CrossRef Carneiro L et al (2008) Nod-like proteins in inflammation and disease. J Pathol: J Pathol Soc Great Britain Ireland 214(2):136–148CrossRef
133.
go back to reference Kufer TA et al (2008) The pattern-recognition molecule Nod1 is localized at the plasma membrane at sites of bacterial interaction. Cell Microbiol 10(2):477–486PubMed Kufer TA et al (2008) The pattern-recognition molecule Nod1 is localized at the plasma membrane at sites of bacterial interaction. Cell Microbiol 10(2):477–486PubMed
134.
135.
go back to reference Hu Z et al (2013) Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341(6142):172–175PubMedCrossRef Hu Z et al (2013) Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341(6142):172–175PubMedCrossRef
136.
137.
go back to reference Rayamajhi M et al (2013) Cutting edge: mouse NAIP1 detects the type III secretion system needle protein. J Immunol 191(8):3986–3989PubMedCrossRef Rayamajhi M et al (2013) Cutting edge: mouse NAIP1 detects the type III secretion system needle protein. J Immunol 191(8):3986–3989PubMedCrossRef
138.
go back to reference Yang J et al (2013) Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci 110(35):14408–14413PubMedPubMedCentralCrossRef Yang J et al (2013) Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci 110(35):14408–14413PubMedPubMedCentralCrossRef
139.
go back to reference Sperandio B et al (2008) Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression. J Exp Med 205(5):1121–1132PubMedPubMedCentralCrossRef Sperandio B et al (2008) Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression. J Exp Med 205(5):1121–1132PubMedPubMedCentralCrossRef
140.
go back to reference Willingham SB et al (2007) Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2(3):147–159PubMedPubMedCentralCrossRef Willingham SB et al (2007) Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2(3):147–159PubMedPubMedCentralCrossRef
141.
go back to reference Suzuki T et al (2005) A novel caspase-1/toll-like receptor 4-independent pathway of cell death induced by cytosolic Shigella in infected macrophages. J Biol Chem 280(14):14042–14050PubMedCrossRef Suzuki T et al (2005) A novel caspase-1/toll-like receptor 4-independent pathway of cell death induced by cytosolic Shigella in infected macrophages. J Biol Chem 280(14):14042–14050PubMedCrossRef
142.
143.
144.
go back to reference Campbell-Valois F-X et al (2014) A fluorescent reporter reveals on/off regulation of the Shigella type III secretion apparatus during entry and cell-to-cell spread. Cell Host Microbe 15(2):177–189PubMedCrossRef Campbell-Valois F-X et al (2014) A fluorescent reporter reveals on/off regulation of the Shigella type III secretion apparatus during entry and cell-to-cell spread. Cell Host Microbe 15(2):177–189PubMedCrossRef
145.
go back to reference Ashida H et al (2007) Shigella chromosomal IpaH proteins are secreted via the type III secretion system and act as effectors. Mol Microbiol 63(3):680–693PubMedCrossRef Ashida H et al (2007) Shigella chromosomal IpaH proteins are secreted via the type III secretion system and act as effectors. Mol Microbiol 63(3):680–693PubMedCrossRef
146.
go back to reference Bell JK et al (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 24(10):528–533PubMedCrossRef Bell JK et al (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 24(10):528–533PubMedCrossRef
147.
go back to reference Norkowski S et al (2018) Bacterial LPX motif-harboring virulence factors constitute a species-spanning family of cell-penetrating effectors. Cell Mol Life Sci 75(12):2273–2289PubMedCrossRef Norkowski S et al (2018) Bacterial LPX motif-harboring virulence factors constitute a species-spanning family of cell-penetrating effectors. Cell Mol Life Sci 75(12):2273–2289PubMedCrossRef
148.
go back to reference Ashida H, Kim M, Sasakawa CJNRM (2014) Exploitation of the host ubiquitin system by human bacterial pathogens. Nat Rev Microbiol 12(6):399–413PubMedCrossRef Ashida H, Kim M, Sasakawa CJNRM (2014) Exploitation of the host ubiquitin system by human bacterial pathogens. Nat Rev Microbiol 12(6):399–413PubMedCrossRef
149.
go back to reference Dupont N et al (2009) Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6(2):137–149PubMedCrossRef Dupont N et al (2009) Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6(2):137–149PubMedCrossRef
150.
go back to reference Pankiv S et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145PubMedCrossRef Pankiv S et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145PubMedCrossRef
151.
go back to reference Wooten MW et al (2005) The p62 scaffold regulates nerve growth factor-induced NF-κB activation by influencing TRAF6 polyubiquitination. J Biol Chem 280(42):35625–35629PubMedCrossRef Wooten MW et al (2005) The p62 scaffold regulates nerve growth factor-induced NF-κB activation by influencing TRAF6 polyubiquitination. J Biol Chem 280(42):35625–35629PubMedCrossRef
152.
go back to reference Vallabhapurapu S, Karin MJAroi (2009) Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol 27:693–733PubMedCrossRef Vallabhapurapu S, Karin MJAroi (2009) Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol 27:693–733PubMedCrossRef
153.
154.
go back to reference Fujita H et al (2014) Mechanism underlying IκB kinase activation mediated by the linear ubiquitin chain assembly complex. Mol Cell Biol 34(7):1322–1335PubMedPubMedCentralCrossRef Fujita H et al (2014) Mechanism underlying IκB kinase activation mediated by the linear ubiquitin chain assembly complex. Mol Cell Biol 34(7):1322–1335PubMedPubMedCentralCrossRef
155.
go back to reference Lamothe B et al (2007) Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of IκB kinase activation. J Biol Chem 282(6):4102–4112PubMedCrossRef Lamothe B et al (2007) Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of IκB kinase activation. J Biol Chem 282(6):4102–4112PubMedCrossRef
156.
go back to reference Miyamoto SJCr (2011) Nuclear initiated NF-κB signaling: NEMO and ATM take center stage. Cell Res 21(1):116–130PubMedCrossRef Miyamoto SJCr (2011) Nuclear initiated NF-κB signaling: NEMO and ATM take center stage. Cell Res 21(1):116–130PubMedCrossRef
157.
158.
go back to reference Ashida H et al (2010) A bacterial E3 ubiquitin ligase IpaH9. 8 targets NEMO/IKKγ to dampen the host NF-κB-mediated inflammatory response. Nat Cell Biol 12(1):66–73PubMedCrossRef Ashida H et al (2010) A bacterial E3 ubiquitin ligase IpaH9. 8 targets NEMO/IKKγ to dampen the host NF-κB-mediated inflammatory response. Nat Cell Biol 12(1):66–73PubMedCrossRef
160.
go back to reference Duda DM et al (2012) Structure of a glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface. Mol Cell 47(3):371–382PubMedPubMedCentralCrossRef Duda DM et al (2012) Structure of a glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface. Mol Cell 47(3):371–382PubMedPubMedCentralCrossRef
161.
go back to reference Suzuki S et al (2014) Shigella IpaH7. 8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages. Proc Natl Acad Sci 111(40):E4254–E4263PubMedPubMedCentralCrossRef Suzuki S et al (2014) Shigella IpaH7. 8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages. Proc Natl Acad Sci 111(40):E4254–E4263PubMedPubMedCentralCrossRef
162.
go back to reference De Jong MF et al (2016) Shigella flexneri suppresses NF-κB activation by inhibiting linear ubiquitin chain ligation. Nat Microbiol 1(7):1–11 De Jong MF et al (2016) Shigella flexneri suppresses NF-κB activation by inhibiting linear ubiquitin chain ligation. Nat Microbiol 1(7):1–11
163.
go back to reference Suzuki S et al (2018) Shigella hijacks the glomulin–cIAPs–inflammasome axis to promote inflammation. EMBO Rep 19(1):89–101PubMedCrossRef Suzuki S et al (2018) Shigella hijacks the glomulin–cIAPs–inflammasome axis to promote inflammation. EMBO Rep 19(1):89–101PubMedCrossRef
164.
go back to reference Zheng Z et al (2016) Bacterial E3 ubiquitin ligase IpaH4. 5 of Shigella flexneri targets TBK1 to dampen the host antibacterial response. J Immunol 196(3):1199–1208PubMedCrossRef Zheng Z et al (2016) Bacterial E3 ubiquitin ligase IpaH4. 5 of Shigella flexneri targets TBK1 to dampen the host antibacterial response. J Immunol 196(3):1199–1208PubMedCrossRef
165.
go back to reference Otsubo R et al (2019) Shigella effector IpaH 4.5 targets 19 S regulatory particle subunit RPN13 in the 26 S proteasome to dampen cytotoxic T lymphocyte activation. Cell Microbiol 21(3):e12974PubMedCrossRef Otsubo R et al (2019) Shigella effector IpaH 4.5 targets 19 S regulatory particle subunit RPN13 in the 26 S proteasome to dampen cytotoxic T lymphocyte activation. Cell Microbiol 21(3):e12974PubMedCrossRef
166.
go back to reference D'Souza-Schorey C, Chavrier PJNrMcb (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7(5):347–358PubMedCrossRef D'Souza-Schorey C, Chavrier PJNrMcb (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7(5):347–358PubMedCrossRef
167.
go back to reference Burnaevskiy N et al (2015) Myristoylome profiling reveals a concerted mechanism of ARF GTPase deacylation by the bacterial protease IpaJ. Mol Cell 58(1):110–122PubMedPubMedCentralCrossRef Burnaevskiy N et al (2015) Myristoylome profiling reveals a concerted mechanism of ARF GTPase deacylation by the bacterial protease IpaJ. Mol Cell 58(1):110–122PubMedPubMedCentralCrossRef
168.
169.
go back to reference Dobbs N et al (2015) STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 18(2):157–168PubMedPubMedCentralCrossRef Dobbs N et al (2015) STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 18(2):157–168PubMedPubMedCentralCrossRef
170.
go back to reference Six DA, Dennis EAJBeBA-M (2000) The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids 1488(1-2):1–19 Six DA, Dennis EAJBeBA-M (2000) The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids 1488(1-2):1–19
171.
go back to reference Linkous A, Yazlovitskaya EJCm (2010) Cytosolic phospholipase A2 as a mediator of disease pathogenesis. Cell Microbiol 12(10):1369–1377PubMedCrossRef Linkous A, Yazlovitskaya EJCm (2010) Cytosolic phospholipase A2 as a mediator of disease pathogenesis. Cell Microbiol 12(10):1369–1377PubMedCrossRef
172.
go back to reference Lu R et al (2015) Shigella effector OspB activates mTORC1 in a manner that depends on IQGAP1 and promotes cell proliferation. PLoS Pathog 11(10):e1005200 Lu R et al (2015) Shigella effector OspB activates mTORC1 in a manner that depends on IQGAP1 and promotes cell proliferation. PLoS Pathog 11(10):e1005200
173.
174.
go back to reference Zurawski DV et al (2006) OspF and OspC1 are Shigella flexneri type III secretion system effectors that are required for postinvasion aspects of virulence. Infect Immun 74(10):5964–5976PubMedPubMedCentralCrossRef Zurawski DV et al (2006) OspF and OspC1 are Shigella flexneri type III secretion system effectors that are required for postinvasion aspects of virulence. Infect Immun 74(10):5964–5976PubMedPubMedCentralCrossRef
175.
go back to reference Singer M, Sansonetti PJJTJoi (2004) IL-8 is a key chemokine regulating neutrophil recruitment in a new mouse model of Shigella-induced colitis. J Immunol 173(6):4197–4206PubMedCrossRef Singer M, Sansonetti PJJTJoi (2004) IL-8 is a key chemokine regulating neutrophil recruitment in a new mouse model of Shigella-induced colitis. J Immunol 173(6):4197–4206PubMedCrossRef
176.
go back to reference Kobayashi T et al (2013) The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe 13(5):570–583PubMedCrossRef Kobayashi T et al (2013) The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe 13(5):570–583PubMedCrossRef
177.
go back to reference Harouz H et al (2015) Targeting of chromatin readers: a novel strategy used by the Shigella flexneri virulence effector OspF to reprogram transcription. Microbial Cell 2(1):26CrossRef Harouz H et al (2015) Targeting of chromatin readers: a novel strategy used by the Shigella flexneri virulence effector OspF to reprogram transcription. Microbial Cell 2(1):26CrossRef
179.
go back to reference Arbibe L et al (2007) An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses. Nat Immunol 8(1):47–56PubMedCrossRef Arbibe L et al (2007) An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses. Nat Immunol 8(1):47–56PubMedCrossRef
180.
go back to reference Zurawski DV et al (2009) Shigella flexneri type III secretion system effectors OspB and OspF target the nucleus to downregulate the host inflammatory response via interactions with retinoblastoma protein. Mol Microbiol 71(2):350–368PubMedCrossRef Zurawski DV et al (2009) Shigella flexneri type III secretion system effectors OspB and OspF target the nucleus to downregulate the host inflammatory response via interactions with retinoblastoma protein. Mol Microbiol 71(2):350–368PubMedCrossRef
181.
go back to reference Jo K et al (2017) Host cell nuclear localization of Shigella flexneri effector OspF is facilitated by SUMOylation. J Microbiol Biotechnol 27(3):610–615PubMedCrossRef Jo K et al (2017) Host cell nuclear localization of Shigella flexneri effector OspF is facilitated by SUMOylation. J Microbiol Biotechnol 27(3):610–615PubMedCrossRef
182.
go back to reference Goldfarb DS et al (2004) Importin α: a multipurpose nuclear-transport receptor. Trends Cell Biol 14(9):505–514PubMedCrossRef Goldfarb DS et al (2004) Importin α: a multipurpose nuclear-transport receptor. Trends Cell Biol 14(9):505–514PubMedCrossRef
183.
go back to reference Zhao H et al (2019) The Shigella type three secretion system effector OspF invades host nucleus by binding host importin α1. World J Microbiol Biotechnol 35(5):1–10CrossRef Zhao H et al (2019) The Shigella type three secretion system effector OspF invades host nucleus by binding host importin α1. World J Microbiol Biotechnol 35(5):1–10CrossRef
184.
185.
go back to reference Kim DW et al (2005) The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc Natl Acad Sci 102(39):14046–14051PubMedPubMedCentralCrossRef Kim DW et al (2005) The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc Natl Acad Sci 102(39):14046–14051PubMedPubMedCentralCrossRef
186.
go back to reference Sanada T et al (2012) The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature 483(7391):623–626PubMedCrossRef Sanada T et al (2012) The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature 483(7391):623–626PubMedCrossRef
187.
go back to reference Nishide A et al (2013) Structural basis for the recognition of Ubc13 by the Shigella flexneri effector OspI. J Mol Biol 425(15):2623–2631PubMedCrossRef Nishide A et al (2013) Structural basis for the recognition of Ubc13 by the Shigella flexneri effector OspI. J Mol Biol 425(15):2623–2631PubMedCrossRef
188.
go back to reference Mohanty P et al (2019) Deamidation disrupts native and transient contacts to weaken the interaction between UBC13 and RING-finger E3 ligases. ELife 8:e49223PubMedPubMedCentralCrossRef Mohanty P et al (2019) Deamidation disrupts native and transient contacts to weaken the interaction between UBC13 and RING-finger E3 ligases. ELife 8:e49223PubMedPubMedCentralCrossRef
189.
go back to reference Newton HJ et al (2010) The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-κB p65. PLoS Pathog 6(5):e1000898 Newton HJ et al (2010) The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-κB p65. PLoS Pathog 6(5):e1000898
190.
go back to reference Yao Q et al (2014) Structure and specificity of the bacterial cysteine methyltransferase effector NleE suggests a novel substrate in human DNA repair pathway. PLoS Pathog 10(11):e1004522 Yao Q et al (2014) Structure and specificity of the bacterial cysteine methyltransferase effector NleE suggests a novel substrate in human DNA repair pathway. PLoS Pathog 10(11):e1004522
191.
go back to reference Zhang L et al (2012) Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation. Nature 481(7380):204–208CrossRef Zhang L et al (2012) Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation. Nature 481(7380):204–208CrossRef
192.
go back to reference Zhang Y et al (2016) Identification of a distinct substrate-binding domain in the bacterial cysteine methyltransferase effectors NleE and OspZ. J Biol Chem 291(38):20149–20162PubMedPubMedCentralCrossRef Zhang Y et al (2016) Identification of a distinct substrate-binding domain in the bacterial cysteine methyltransferase effectors NleE and OspZ. J Biol Chem 291(38):20149–20162PubMedPubMedCentralCrossRef
193.
go back to reference Pollard TD, Borisy GGJC (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465PubMedCrossRef Pollard TD, Borisy GGJC (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465PubMedCrossRef
196.
go back to reference Selbach M, Backert SJTim (2005) Cortactin: an Achilles’ heel of the actin cytoskeleton targeted by pathogens. Trends Microbiol 13(4):181–189PubMedCrossRef Selbach M, Backert SJTim (2005) Cortactin: an Achilles’ heel of the actin cytoskeleton targeted by pathogens. Trends Microbiol 13(4):181–189PubMedCrossRef
197.
go back to reference Rohatgi R, Ho H-yH, Kirschner MWJTJocb (2000) Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J Cell Biol 150(6):1299–1310PubMedPubMedCentralCrossRef Rohatgi R, Ho H-yH, Kirschner MWJTJocb (2000) Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J Cell Biol 150(6):1299–1310PubMedPubMedCentralCrossRef
198.
go back to reference Miki H et al (1998) Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391(6662):93–96PubMedCrossRef Miki H et al (1998) Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391(6662):93–96PubMedCrossRef
199.
go back to reference Sandvig KJTcsobpt (2005) The Shiga toxins: properties and action on cells. In: The comprehensive sourcebook of bacterial protein toxins, pp 310–322 Sandvig KJTcsobpt (2005) The Shiga toxins: properties and action on cells. In: The comprehensive sourcebook of bacterial protein toxins, pp 310–322
200.
go back to reference Melton-Celsa ARJMs, (2014) Shiga toxin (Stx) classification, structure, and function. Microbiol Spect 2(2):2–4 Melton-Celsa ARJMs, (2014) Shiga toxin (Stx) classification, structure, and function. Microbiol Spect 2(2):2–4
201.
go back to reference Cilmi SA et al (2006) Fabry disease in mice protects against lethal disease caused by Shiga toxin–expressing enterohemorrhagic Escherichia coli. J Infect Dis 194(8):1135–1140PubMedCrossRef Cilmi SA et al (2006) Fabry disease in mice protects against lethal disease caused by Shiga toxin–expressing enterohemorrhagic Escherichia coli. J Infect Dis 194(8):1135–1140PubMedCrossRef
202.
go back to reference Johansson KE et al (2019) Shiga toxin signals via ATP and its effect is blocked by purinergic receptor antagonism. Sci Rep 9(1):1–11CrossRef Johansson KE et al (2019) Shiga toxin signals via ATP and its effect is blocked by purinergic receptor antagonism. Sci Rep 9(1):1–11CrossRef
203.
go back to reference Tesh VL (2012) The induction of apoptosis by Shiga toxins and ricin. Curr Top Microbiol Immunol 357:137–178PubMed Tesh VL (2012) The induction of apoptosis by Shiga toxins and ricin. Curr Top Microbiol Immunol 357:137–178PubMed
204.
go back to reference Villysson A et al (2018) Shiga toxin interactions with microvesicles. J Extracell Vesicles 7:168–168 Villysson A et al (2018) Shiga toxin interactions with microvesicles. J Extracell Vesicles 7:168–168
205.
go back to reference Obrig TG et al (1993) Endothelial heterogeneity in Shiga toxin receptors and responses. J Biol Chem 268(21):15484–15488PubMedCrossRef Obrig TG et al (1993) Endothelial heterogeneity in Shiga toxin receptors and responses. J Biol Chem 268(21):15484–15488PubMedCrossRef
206.
go back to reference Brunner K et al (2019) Shigella-mediated immunosuppression in the human gut: subversion extends from innate to adaptive immune responses. Hum Vaccin Immunother 15(6):1317–1325PubMedPubMedCentralCrossRef Brunner K et al (2019) Shigella-mediated immunosuppression in the human gut: subversion extends from innate to adaptive immune responses. Hum Vaccin Immunother 15(6):1317–1325PubMedPubMedCentralCrossRef
207.
go back to reference Pédron T, Thibault C, Sansonetti PJ (2003) The invasive phenotype of Shigella flexneri directs a distinct gene expression pattern in the human intestinal epithelial cell line Caco-2. J Biol Chem 278(36):33878–33886PubMedCrossRef Pédron T, Thibault C, Sansonetti PJ (2003) The invasive phenotype of Shigella flexneri directs a distinct gene expression pattern in the human intestinal epithelial cell line Caco-2. J Biol Chem 278(36):33878–33886PubMedCrossRef
208.
go back to reference Mostowy S et al (2010) Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 8(5):433–444PubMedCrossRef Mostowy S et al (2010) Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 8(5):433–444PubMedCrossRef
209.
210.
go back to reference Mostowy S et al (2011) p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J Biol Chem 286(30):26987–26995PubMedPubMedCentralCrossRef Mostowy S et al (2011) p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J Biol Chem 286(30):26987–26995PubMedPubMedCentralCrossRef
211.
212.
go back to reference McArthur MA, Maciel M Jr, Pasetti MFJV (2017) Human immune responses against Shigella and enterotoxigenic E. coli: current advances and the path forward. Vaccine 35(49):6803–6806PubMedPubMedCentralCrossRef McArthur MA, Maciel M Jr, Pasetti MFJV (2017) Human immune responses against Shigella and enterotoxigenic E. coli: current advances and the path forward. Vaccine 35(49):6803–6806PubMedPubMedCentralCrossRef
213.
go back to reference Brinkmann V et al (2004) Neutrophil extracellular traps kill bacteria. science 303(5663):1532–1535PubMedCrossRef Brinkmann V et al (2004) Neutrophil extracellular traps kill bacteria. science 303(5663):1532–1535PubMedCrossRef
214.
go back to reference Weinrauch Y et al (2002) Neutrophil elastase targets virulence factors of enterobacteria. Nature 417(6884):91–94PubMedCrossRef Weinrauch Y et al (2002) Neutrophil elastase targets virulence factors of enterobacteria. Nature 417(6884):91–94PubMedCrossRef
215.
go back to reference Averhoff P et al (2008) Single residue determines the specificity of neutrophil elastase for Shigella virulence factors. J Mol Biol 377(4):1053–1066PubMedCrossRef Averhoff P et al (2008) Single residue determines the specificity of neutrophil elastase for Shigella virulence factors. J Mol Biol 377(4):1053–1066PubMedCrossRef
216.
217.
go back to reference Pore D et al (2010) 34 kDa MOMP of Shigella flexneri promotes TLR2 mediated macrophage activation with the engagement of NF-κB and p38 MAP kinase signaling. Mol Immunol 47(9):1739–1746PubMedCrossRef Pore D et al (2010) 34 kDa MOMP of Shigella flexneri promotes TLR2 mediated macrophage activation with the engagement of NF-κB and p38 MAP kinase signaling. Mol Immunol 47(9):1739–1746PubMedCrossRef
218.
go back to reference Pore D et al (2009) Purification and characterization of an immunogenic outer membrane protein of Shigella flexneri 2a. Vaccine 27(42):5855–5864PubMedCrossRef Pore D et al (2009) Purification and characterization of an immunogenic outer membrane protein of Shigella flexneri 2a. Vaccine 27(42):5855–5864PubMedCrossRef
219.
go back to reference Sellge G et al (2010) Th17 cells are the dominant T cell subtype primed by Shigella flexneri mediating protective immunity. J Immunol 184(4):2076–2085PubMedCrossRef Sellge G et al (2010) Th17 cells are the dominant T cell subtype primed by Shigella flexneri mediating protective immunity. J Immunol 184(4):2076–2085PubMedCrossRef
221.
go back to reference Cohen D et al (2019) Serum IgG antibodies to Shigella lipopolysaccharide antigens–a correlate of protection against shigellosis. Hum Vaccin Immunother 15(6):1401–1408PubMedPubMedCentralCrossRef Cohen D et al (2019) Serum IgG antibodies to Shigella lipopolysaccharide antigens–a correlate of protection against shigellosis. Hum Vaccin Immunother 15(6):1401–1408PubMedPubMedCentralCrossRef
223.
go back to reference Cohen D et al (1991) Prospective study of the association between serum antibodies to lipopolysaccharide O antigen and the attack rate of shigellosis. J Clin Microbiol 29(2):386–389PubMedPubMedCentralCrossRef Cohen D et al (1991) Prospective study of the association between serum antibodies to lipopolysaccharide O antigen and the attack rate of shigellosis. J Clin Microbiol 29(2):386–389PubMedPubMedCentralCrossRef
224.
go back to reference Mani S et al (2019) Role of antigen specific T and B cells in systemic and mucosal immune responses in ETEC and Shigella infections, and their potential to serve as correlates of protection in vaccine development. Vaccine 37(34):4787–4793PubMedPubMedCentralCrossRef Mani S et al (2019) Role of antigen specific T and B cells in systemic and mucosal immune responses in ETEC and Shigella infections, and their potential to serve as correlates of protection in vaccine development. Vaccine 37(34):4787–4793PubMedPubMedCentralCrossRef
225.
go back to reference Mukherjee T et al (2019) Epidermal growth factor receptor–responsive indoleamine 2, 3-dioxygenase confers immune homeostasis during Shigella flexneri infection. J Infect Dis 219(11):1841–1851PubMedCrossRef Mukherjee T et al (2019) Epidermal growth factor receptor–responsive indoleamine 2, 3-dioxygenase confers immune homeostasis during Shigella flexneri infection. J Infect Dis 219(11):1841–1851PubMedCrossRef
226.
go back to reference Huddleston JR (2014) Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist 7:167PubMedPubMedCentralCrossRef Huddleston JR (2014) Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist 7:167PubMedPubMedCentralCrossRef
228.
go back to reference Boto L, Pineda M, Pineda R (2019) Potential impacts of horizontal gene transfer on human health and physiology and how anthropogenic activity can affect it. FEBS J 286(20):3959–3967PubMedCrossRef Boto L, Pineda M, Pineda R (2019) Potential impacts of horizontal gene transfer on human health and physiology and how anthropogenic activity can affect it. FEBS J 286(20):3959–3967PubMedCrossRef
229.
go back to reference Gosalbes M et al (2016) High frequencies of antibiotic resistance genes in infants’ meconium and early fecal samples. Journal of developmental origins of health and disease. J Dev Orig Health Dis 7(1):35–44PubMedCrossRef Gosalbes M et al (2016) High frequencies of antibiotic resistance genes in infants’ meconium and early fecal samples. Journal of developmental origins of health and disease. J Dev Orig Health Dis 7(1):35–44PubMedCrossRef
230.
go back to reference Sack DA et al (1994) Is protection against shigellosis induced by natural infection with Plesiomonas shigelloides? Lancet 343(8910):1413–1415PubMedCrossRef Sack DA et al (1994) Is protection against shigellosis induced by natural infection with Plesiomonas shigelloides? Lancet 343(8910):1413–1415PubMedCrossRef
231.
go back to reference Nasser A, Zamirnasta M, Jalilian FAJBbra (2014) Bacterial nanoparticle as a vaccine for meningococcal disease. Biosci Biotechnol Res Asia 11(2):449–453 Nasser A, Zamirnasta M, Jalilian FAJBbra (2014) Bacterial nanoparticle as a vaccine for meningococcal disease. Biosci Biotechnol Res Asia 11(2):449–453
232.
go back to reference Fries LF et al (2001) Safety and immunogenicity of a proteosome-Shigella flexneri 2a lipopolysaccharide vaccine administered intranasally to healthy adults. Infect Immun 69(7):4545–4553PubMedPubMedCentralCrossRef Fries LF et al (2001) Safety and immunogenicity of a proteosome-Shigella flexneri 2a lipopolysaccharide vaccine administered intranasally to healthy adults. Infect Immun 69(7):4545–4553PubMedPubMedCentralCrossRef
233.
go back to reference McKenzie R et al (2006) Safety and immunogenicity of an oral, inactivated, whole-cell vaccine for Shigella sonnei: preclinical studies and a phase I trial. Vaccine 24(18):3735–3745PubMedCrossRef McKenzie R et al (2006) Safety and immunogenicity of an oral, inactivated, whole-cell vaccine for Shigella sonnei: preclinical studies and a phase I trial. Vaccine 24(18):3735–3745PubMedCrossRef
234.
go back to reference Oaks EV, Turbyfill KRJV (2006) Development and evaluation of a Shigella flexneri 2a and S. sonnei bivalent invasin complex (Invaplex) vaccine. Vaccine 24(13):2290–2301PubMedCrossRef Oaks EV, Turbyfill KRJV (2006) Development and evaluation of a Shigella flexneri 2a and S. sonnei bivalent invasin complex (Invaplex) vaccine. Vaccine 24(13):2290–2301PubMedCrossRef
235.
go back to reference Nasser A et al (2019) Specification of bacteriophage isolated against clinical methicillin-resistant staphylococcus aureus. Osong Public Health Res Perspect 10(1):20PubMedPubMedCentralCrossRef Nasser A et al (2019) Specification of bacteriophage isolated against clinical methicillin-resistant staphylococcus aureus. Osong Public Health Res Perspect 10(1):20PubMedPubMedCentralCrossRef
236.
go back to reference Azizian R et al (2015) Sewage as a rich source of phage study against Pseudomonas aeruginosa PAO. Biologicals 43(4):238–241PubMedCrossRef Azizian R et al (2015) Sewage as a rich source of phage study against Pseudomonas aeruginosa PAO. Biologicals 43(4):238–241PubMedCrossRef
237.
go back to reference Rezaei F et al (2014) Using phage as a highly specific antibiotic alternative against methicillin resistance Staphylococcus aureus (MRSA). Biosci Biotechnol Res Asia 11(2):523–529CrossRef Rezaei F et al (2014) Using phage as a highly specific antibiotic alternative against methicillin resistance Staphylococcus aureus (MRSA). Biosci Biotechnol Res Asia 11(2):523–529CrossRef
238.
239.
go back to reference Mai V et al (2015) Bacteriophage administration significantly reduces Shigella colonization and shedding by Shigella-challenged mice without deleterious side effects and distortions in the gut microbiota. Bacteriophage 5(4):e1088124PubMedPubMedCentralCrossRef Mai V et al (2015) Bacteriophage administration significantly reduces Shigella colonization and shedding by Shigella-challenged mice without deleterious side effects and distortions in the gut microbiota. Bacteriophage 5(4):e1088124PubMedPubMedCentralCrossRef
Metadata
Title
Molecular mechanisms of Shigella effector proteins: a common pathogen among diarrheic pediatric population
Authors
Ahmad Nasser
Mehrdad Mosadegh
Taher Azimi
Aref Shariati
Publication date
01-12-2022
Publisher
Springer International Publishing
Published in
Molecular and Cellular Pediatrics / Issue 1/2022
Electronic ISSN: 2194-7791
DOI
https://doi.org/10.1186/s40348-022-00145-z

Other articles of this Issue 1/2022

Molecular and Cellular Pediatrics 1/2022 Go to the issue