Skip to main content
Top
Published in: Molecular and Cellular Pediatrics 1/2016

Open Access 01-12-2016 | Mini review

Update on host-pathogen interactions in cystic fibrosis lung disease

Authors: Andreas Hector, Nina Frey, Dominik Hartl

Published in: Molecular and Cellular Pediatrics | Issue 1/2016

Login to get access

Abstract

Bacterial and fungal infections are hallmarks of cystic fibrosis (CF) lung disease. In the era of long-term inhaled antibiotics and increasing CF patient survival, new “emerging” pathogens are detected in CF airways, yet their pathophysiological disease relevance remains largely controversial and incompletely defined. As a response to chronic microbial triggers, innate immune cells, particularly neutrophils, are continuously recruited into CF airways where they combat pathogens but also cause tissue injury through release of oxidants and proteases. The coordinated interplay between host immune cell activation and pathogens is essential for the outcome of CF lung disease. Here, we provide a concise overview and update on host-pathogen interactions in CF lung disease.
Literature
1.
go back to reference Adjemian J, Olivier KN, Prevots DR (2014) Nontuberculous mycobacteria among patients with cystic fibrosis in the United States: screening practices and environmental risk. Am J Respir Crit Care Med 190:581–586PubMedCentralCrossRefPubMed Adjemian J, Olivier KN, Prevots DR (2014) Nontuberculous mycobacteria among patients with cystic fibrosis in the United States: screening practices and environmental risk. Am J Respir Crit Care Med 190:581–586PubMedCentralCrossRefPubMed
2.
go back to reference Amin R, Dupuis A, Aaron SD et al (2010) The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest 137:171–176CrossRefPubMed Amin R, Dupuis A, Aaron SD et al (2010) The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest 137:171–176CrossRefPubMed
3.
go back to reference Bendiak GN, Ratjen F (2009) The approach to Pseudomonas aeruginosa in cystic fibrosis. Semin Respir Crit Care Med 30:587–595CrossRefPubMed Bendiak GN, Ratjen F (2009) The approach to Pseudomonas aeruginosa in cystic fibrosis. Semin Respir Crit Care Med 30:587–595CrossRefPubMed
4.
go back to reference Branzk N, Lubojemska A, Hardison SE et al (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 15:1017–1025PubMedCentralCrossRefPubMed Branzk N, Lubojemska A, Hardison SE et al (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 15:1017–1025PubMedCentralCrossRefPubMed
5.
go back to reference Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Nature reviews. Microbiology 5:577–582PubMed Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Nature reviews. Microbiology 5:577–582PubMed
6.
go back to reference Cantin AM, Hartl D, Konstan MW et al (2015) Inflammation in cystic fibrosis lung disease: pathogenesis and therapy. J Cyst Fibros 14:419–430CrossRefPubMed Cantin AM, Hartl D, Konstan MW et al (2015) Inflammation in cystic fibrosis lung disease: pathogenesis and therapy. J Cyst Fibros 14:419–430CrossRefPubMed
7.
go back to reference Chmiel JF, Aksamit TR, Chotirmall SH et al (2014) Antibiotic management of lung infections in cystic fibrosis. I. The microbiome, methicillin-resistant Staphylococcus aureus, gram-negative bacteria, and multiple infections. Ann Am Thorac Soc 11:1120–1129CrossRefPubMed Chmiel JF, Aksamit TR, Chotirmall SH et al (2014) Antibiotic management of lung infections in cystic fibrosis. I. The microbiome, methicillin-resistant Staphylococcus aureus, gram-negative bacteria, and multiple infections. Ann Am Thorac Soc 11:1120–1129CrossRefPubMed
8.
go back to reference Chmiel JF, Aksamit TR, Chotirmall SH et al (2014) Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi. Ann Am Thorac Soc 11:1298–1306CrossRefPubMed Chmiel JF, Aksamit TR, Chotirmall SH et al (2014) Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi. Ann Am Thorac Soc 11:1298–1306CrossRefPubMed
9.
go back to reference Chotirmall SH, Greene CM, Mcelvaney NG (2010) Candida species in cystic fibrosis: a road less travelled. Med Mycol 48:S114–S124CrossRefPubMed Chotirmall SH, Greene CM, Mcelvaney NG (2010) Candida species in cystic fibrosis: a road less travelled. Med Mycol 48:S114–S124CrossRefPubMed
10.
go back to reference Chotirmall SH, O’donoghue E, Bennett K et al (2010) Sputum Candida albicans presages FEV(1) decline and hospital-treated exacerbations in cystic fibrosis. Chest 138:1186–1195CrossRefPubMed Chotirmall SH, O’donoghue E, Bennett K et al (2010) Sputum Candida albicans presages FEV(1) decline and hospital-treated exacerbations in cystic fibrosis. Chest 138:1186–1195CrossRefPubMed
11.
go back to reference Courtney JM, Dunbar KE, Mcdowell A et al (2004) Clinical outcome of Burkholderia cepacia complex infection in cystic fibrosis adults. J Cyst Fibros 3:93–98CrossRefPubMed Courtney JM, Dunbar KE, Mcdowell A et al (2004) Clinical outcome of Burkholderia cepacia complex infection in cystic fibrosis adults. J Cyst Fibros 3:93–98CrossRefPubMed
12.
go back to reference De Baets F, Schelstraete P, Van Daele S et al (2007) Achromobacter xylosoxidans in cystic fibrosis: prevalence and clinical relevance. J Cyst Fibros 6:75–78CrossRefPubMed De Baets F, Schelstraete P, Van Daele S et al (2007) Achromobacter xylosoxidans in cystic fibrosis: prevalence and clinical relevance. J Cyst Fibros 6:75–78CrossRefPubMed
13.
go back to reference Goss CH, Mayer-Hamblett N, Aitken ML et al (2004) Association between Stenotrophomonas maltophilia and lung function in cystic fibrosis. Thorax 59:955–959PubMedCentralCrossRefPubMed Goss CH, Mayer-Hamblett N, Aitken ML et al (2004) Association between Stenotrophomonas maltophilia and lung function in cystic fibrosis. Thorax 59:955–959PubMedCentralCrossRefPubMed
14.
go back to reference Goss CH, Muhlebach MS (2011) Review: Staphylococcus aureus and MRSA in cystic fibrosis. J Cyst Fibros 10:298–306CrossRefPubMed Goss CH, Muhlebach MS (2011) Review: Staphylococcus aureus and MRSA in cystic fibrosis. J Cyst Fibros 10:298–306CrossRefPubMed
15.
go back to reference Hansen CR, Pressler T, Nielsen KG et al (2010) Inflammation in Achromobacter xylosoxidans infected cystic fibrosis patients. J Cyst Fibros 9:51–58CrossRefPubMed Hansen CR, Pressler T, Nielsen KG et al (2010) Inflammation in Achromobacter xylosoxidans infected cystic fibrosis patients. J Cyst Fibros 9:51–58CrossRefPubMed
16.
go back to reference Hartl D, Gaggar A, Bruscia E et al (2012) Innate immunity in cystic fibrosis lung disease. J Cyst Fibros 11:363–382CrossRefPubMed Hartl D, Gaggar A, Bruscia E et al (2012) Innate immunity in cystic fibrosis lung disease. J Cyst Fibros 11:363–382CrossRefPubMed
17.
go back to reference Hassett DJ, Korfhagen TR, Irvin RT et al (2010) Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies. Expert Opin Ther Targets 14:117–130CrossRefPubMed Hassett DJ, Korfhagen TR, Irvin RT et al (2010) Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies. Expert Opin Ther Targets 14:117–130CrossRefPubMed
18.
go back to reference Hector A, Schafer H, Poschel S et al (2015) Regulatory T cell impairment in cystic fibrosis patients with chronic pseudomonas infection. Am J Respir Crit Care Med 191(8):914–923CrossRefPubMed Hector A, Schafer H, Poschel S et al (2015) Regulatory T cell impairment in cystic fibrosis patients with chronic pseudomonas infection. Am J Respir Crit Care Med 191(8):914–923CrossRefPubMed
19.
go back to reference Ingersoll SA, Laval J, Forrest OA et al (2015) Mature cystic fibrosis airway neutrophils suppress T cell function: evidence for a role of arginase 1 but not programmed death-ligand 1. J Immunol 194:5520–5528CrossRefPubMed Ingersoll SA, Laval J, Forrest OA et al (2015) Mature cystic fibrosis airway neutrophils suppress T cell function: evidence for a role of arginase 1 but not programmed death-ligand 1. J Immunol 194:5520–5528CrossRefPubMed
20.
22.
go back to reference Nagano Y, Cherie MB, Goldsmith CE, et al. (2009) Emergence of Scedosporium apiospermum in patients with cystic fibrosis. BMJ Case Reports:bcr2007119503 Nagano Y, Cherie MB, Goldsmith CE, et al. (2009) Emergence of Scedosporium apiospermum in patients with cystic fibrosis. BMJ Case Reports:bcr2007119503
23.
go back to reference Nick JA (2003) Nontuberculous mycobacteria in cystic fibrosis. Semin Respir Crit Care Med 24:693–702CrossRefPubMed Nick JA (2003) Nontuberculous mycobacteria in cystic fibrosis. Semin Respir Crit Care Med 24:693–702CrossRefPubMed
24.
go back to reference Regamey N, Tsartsali L, Hilliard TN et al (2011) Distinct patterns of inflammation in the airway lumen and bronchial mucosa of children with cystic fibrosis. Thorax 67(2):164–170CrossRefPubMed Regamey N, Tsartsali L, Hilliard TN et al (2011) Distinct patterns of inflammation in the airway lumen and bronchial mucosa of children with cystic fibrosis. Thorax 67(2):164–170CrossRefPubMed
25.
go back to reference Regan KH, Bhatt J (2014) Eradication therapy for Burkholderia cepacia complex in people with cystic fibrosis. Cochrane Database Syst Rev 10, CD009876PubMed Regan KH, Bhatt J (2014) Eradication therapy for Burkholderia cepacia complex in people with cystic fibrosis. Cochrane Database Syst Rev 10, CD009876PubMed
26.
go back to reference Shoseyov D, Brownlee KG, Conway SP et al (2006) Aspergillus bronchitis in cystic fibrosis. Chest 130:222–226CrossRefPubMed Shoseyov D, Brownlee KG, Conway SP et al (2006) Aspergillus bronchitis in cystic fibrosis. Chest 130:222–226CrossRefPubMed
27.
28.
go back to reference Tang AC, Turvey SE, Alves MP et al (2014) Current concepts: host-pathogen interactions in cystic fibrosis airways disease. Eur Respir Rev 23:320–332CrossRefPubMed Tang AC, Turvey SE, Alves MP et al (2014) Current concepts: host-pathogen interactions in cystic fibrosis airways disease. Eur Respir Rev 23:320–332CrossRefPubMed
29.
go back to reference Teichgraber V, Ulrich M, Endlich N et al (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14:382–391CrossRefPubMed Teichgraber V, Ulrich M, Endlich N et al (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14:382–391CrossRefPubMed
30.
go back to reference Waters V, Atenafu EG, Salazar JG et al (2012) Chronic Stenotrophomonas maltophilia infection and exacerbation outcomes in cystic fibrosis. J Cyst Fibros 11:8–13CrossRefPubMed Waters V, Atenafu EG, Salazar JG et al (2012) Chronic Stenotrophomonas maltophilia infection and exacerbation outcomes in cystic fibrosis. J Cyst Fibros 11:8–13CrossRefPubMed
31.
go back to reference Waters V, Ratjen F (2014) Antibiotic treatment for nontuberculous mycobacteria lung infection in people with cystic fibrosis. Cochrane Database Syst Rev 12, CD010004PubMed Waters V, Ratjen F (2014) Antibiotic treatment for nontuberculous mycobacteria lung infection in people with cystic fibrosis. Cochrane Database Syst Rev 12, CD010004PubMed
32.
go back to reference Waters V, Yau Y, Prasad S et al (2011) Stenotrophomonas maltophilia in cystic fibrosis: serologic response and effect on lung disease. Am J Respir Crit Care Med 183:635–640CrossRefPubMed Waters V, Yau Y, Prasad S et al (2011) Stenotrophomonas maltophilia in cystic fibrosis: serologic response and effect on lung disease. Am J Respir Crit Care Med 183:635–640CrossRefPubMed
33.
go back to reference Waters VJ, Ratjen FA (2014) Is there a role for antimicrobial stewardship in cystic fibrosis? Ann Am Thorac Soc 11:1116–1119CrossRefPubMed Waters VJ, Ratjen FA (2014) Is there a role for antimicrobial stewardship in cystic fibrosis? Ann Am Thorac Soc 11:1116–1119CrossRefPubMed
34.
go back to reference Waters VJ, Stanojevic S, Sonneveld N et al (2015) Factors associated with response to treatment of pulmonary exacerbations in cystic fibrosis patients. J Cyst Fibros 14(6):755–762CrossRefPubMed Waters VJ, Stanojevic S, Sonneveld N et al (2015) Factors associated with response to treatment of pulmonary exacerbations in cystic fibrosis patients. J Cyst Fibros 14(6):755–762CrossRefPubMed
35.
go back to reference Yonker LM, Cigana C, Hurley BP et al (2015) Host-pathogen interplay in the respiratory environment of cystic fibrosis. J Cyst Fibros 14:431–439CrossRefPubMed Yonker LM, Cigana C, Hurley BP et al (2015) Host-pathogen interplay in the respiratory environment of cystic fibrosis. J Cyst Fibros 14:431–439CrossRefPubMed
Metadata
Title
Update on host-pathogen interactions in cystic fibrosis lung disease
Authors
Andreas Hector
Nina Frey
Dominik Hartl
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
Molecular and Cellular Pediatrics / Issue 1/2016
Electronic ISSN: 2194-7791
DOI
https://doi.org/10.1186/s40348-016-0039-5

Other articles of this Issue 1/2016

Molecular and Cellular Pediatrics 1/2016 Go to the issue