Skip to main content
Top
Published in: Experimental Hematology & Oncology 1/2015

Open Access 01-12-2015 | Research

A systematic classification of megakaryocytic dysplasia and its impact on prognosis for patients with myelodysplastic syndromes

Authors: Gege Feng, Robert Peter Gale, Wen Cui, Wenyu Cai, Gang Huang, Zefeng Xu, Tiejun Qin, Yue Zhang, Bing Li, Liwei Fang, Hongli Zhang, Lijuan Pan, Naibo Hu, Shiqiang Qu, Jingya Wang, Yajuan Cui, Zhijian Xiao

Published in: Experimental Hematology & Oncology | Issue 1/2015

Login to get access

Abstract

Background

Dys-megakaryopoiesis is defined as ≥10 % of dysplastic megakaryocytes in bone marrow smears by the World Health Organization. However, concordance rates for dysplastic megakaryocytes between different observers is low and, consequently, evaluation of dysmegakaryopoiesis is also often discordant.

Results

We performed CD41 immune staining and proposed a systematic classification of dys-megakaryopoiesis on bone marrow films: (1) micro-megakaryocytes (<12 µm); (2) micro-megakaryocytes (12–40 µm) with 1 nucleus; (3) micro-megakaryocytes (12–40 µm) with 2 nuclei; (4) micro-megakaryocytes (12–40 um) with multiple (more than 2) nuclei; (5) dysplastic megakaryocytes (≥40 µm) with 1 nucleus; (6) dysplastic megakaryocytes (≥40 µm) with 2 nuclei; and (7) dysplastic megakaryocytes (≥40 µm) with multiple (more than 2) nuclei. Further, we evaluated the prognostic impact of micro-megakaryocytes and dysplastic mono-nucleated megakaryocytes on MDS patients. The best discriminator cut-off point for each group was determined by the minimal P value approach. In multivariate analyses micro-megakaryocytes ≥25 % and dysplastic mono-nucleated megakaryocytes ≥30 % were independent adverse prognostic factors (hazard ratio [HR] = 1.58 [95 % confidence interval [CI], 1.11, 2.23]; P = 0.010 and 1.53 [1.09, 2.16]; P = 0.014).

Conclusions

Our data suggest integration of micro-megakaryocytes and dysplastic mono-nucleated megakaryocytes improve predictive accuracy of the international prognostic scoring system-revised (IPSS-R) scoring system.
Appendix
Available only for authorised users
Literature
2.
go back to reference Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.CrossRefPubMed Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.CrossRefPubMed
3.
go back to reference Malcovati L, Hellstrom-Lindberg E, Bowen D, Ades L, Cermak J, Del Canizo C, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013;122:2943–64.CrossRefPubMedPubMedCentral Malcovati L, Hellstrom-Lindberg E, Bowen D, Ades L, Cermak J, Del Canizo C, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013;122:2943–64.CrossRefPubMedPubMedCentral
4.
go back to reference Matsuda A, Germing U, Jinnai I, Iwanaga M, Misumi M, Kuendgen A, et al. Improvement of criteria for refractory cytopenia with multilineage dysplasia according to the WHO classification based on prognostic significance of morphological features in patients with refractory anemia according to the FAB classification. Leukemia. 2007;21:678–86.PubMed Matsuda A, Germing U, Jinnai I, Iwanaga M, Misumi M, Kuendgen A, et al. Improvement of criteria for refractory cytopenia with multilineage dysplasia according to the WHO classification based on prognostic significance of morphological features in patients with refractory anemia according to the FAB classification. Leukemia. 2007;21:678–86.PubMed
5.
go back to reference Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–88.PubMed Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–88.PubMed
6.
go back to reference Malcovati L, Germing U, Kuendgen A, Della Porta MG, Pascutto C, Invernizzi R, et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol. 2007;25:3503–10.CrossRefPubMed Malcovati L, Germing U, Kuendgen A, Della Porta MG, Pascutto C, Invernizzi R, et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol. 2007;25:3503–10.CrossRefPubMed
7.
go back to reference Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.CrossRefPubMedPubMedCentral Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.CrossRefPubMedPubMedCentral
8.
go back to reference Swerdllow S, Campo E, Harris NL. WHO classification of tumours of haematopoietic and lymphoid tissues. France: IARC Press; 2008. p. 2008. Swerdllow S, Campo E, Harris NL. WHO classification of tumours of haematopoietic and lymphoid tissues. France: IARC Press; 2008. p. 2008.
9.
go back to reference Kuriyama K, Tomonaga M, Matsuo T, Ginnai I, Ichimaru M. Diagnostic significance of detecting pseudo-Pelger-Huet anomalies and micro-megakaryocytes in myelodysplastic syndrome. Br J Haematol. 1986;63:665–9.CrossRefPubMed Kuriyama K, Tomonaga M, Matsuo T, Ginnai I, Ichimaru M. Diagnostic significance of detecting pseudo-Pelger-Huet anomalies and micro-megakaryocytes in myelodysplastic syndrome. Br J Haematol. 1986;63:665–9.CrossRefPubMed
10.
go back to reference Matsuda A, Jinnai I, Yagasaki F, Kusumoto S, Minamihisamatsu M, Honda S, et al. Refractory anemia with severe dysplasia: clinical significance of morphological features in refractory anemia. Leukemia. 1998;12:482–5.CrossRefPubMed Matsuda A, Jinnai I, Yagasaki F, Kusumoto S, Minamihisamatsu M, Honda S, et al. Refractory anemia with severe dysplasia: clinical significance of morphological features in refractory anemia. Leukemia. 1998;12:482–5.CrossRefPubMed
11.
go back to reference Della Porta MG, Travaglino E, Boveri E, Ponzoni M, Malcovati L, Papaemmanuil E, et al. Minimal morphological criteria for defining bone marrow dysplasia: a basis for clinical implementation of WHO classification of myelodysplastic syndromes. Leukemia. 2015;29:66–75.CrossRefPubMed Della Porta MG, Travaglino E, Boveri E, Ponzoni M, Malcovati L, Papaemmanuil E, et al. Minimal morphological criteria for defining bone marrow dysplasia: a basis for clinical implementation of WHO classification of myelodysplastic syndromes. Leukemia. 2015;29:66–75.CrossRefPubMed
12.
go back to reference Germing U, Strupp C, Giagounidis A, Haas R, Gattermann N, Starke C, et al. Evaluation of dysplasia through detailed cytomorphology in 3156 patients from the Dusseldorf Registry on myelodysplastic syndromes. Leukemia Res. 2012;36:727–34.CrossRef Germing U, Strupp C, Giagounidis A, Haas R, Gattermann N, Starke C, et al. Evaluation of dysplasia through detailed cytomorphology in 3156 patients from the Dusseldorf Registry on myelodysplastic syndromes. Leukemia Res. 2012;36:727–34.CrossRef
13.
go back to reference Abgrall JF, Berthou C, Sensebe L, Le Niger C, Escoffre M. Decreased in vitro megakaryocyte colony formation in chronic idiopathic thrombocytopenic purpura. Br J Haematol. 1993;85:803–4.CrossRefPubMed Abgrall JF, Berthou C, Sensebe L, Le Niger C, Escoffre M. Decreased in vitro megakaryocyte colony formation in chronic idiopathic thrombocytopenic purpura. Br J Haematol. 1993;85:803–4.CrossRefPubMed
14.
go back to reference Alimardani G, Guichard J, Fichelson S, Cramer EM. Pathogenic effects of anti-glycoprotein Ib antibodies on megakaryocytes and platelets. Thromb Haemost. 2002;88:1039–46.PubMed Alimardani G, Guichard J, Fichelson S, Cramer EM. Pathogenic effects of anti-glycoprotein Ib antibodies on megakaryocytes and platelets. Thromb Haemost. 2002;88:1039–46.PubMed
15.
go back to reference Vinci G, Tabilio A, Deschamps JF, Van Haeke D, Henri A, Guichard J, et al. Immunological study of in vitro maturation of human megakaryocytes. Br J Haematol. 1984;56:589–605.CrossRefPubMed Vinci G, Tabilio A, Deschamps JF, Van Haeke D, Henri A, Guichard J, et al. Immunological study of in vitro maturation of human megakaryocytes. Br J Haematol. 1984;56:589–605.CrossRefPubMed
16.
go back to reference Rabellino EM, Levene RB, Leung LL, Nachman RL. Human megakaryocytes. II. Expression of platelet proteins in early marrow megakaryocytes. J Exp Med. 1981;154:88–100.CrossRefPubMed Rabellino EM, Levene RB, Leung LL, Nachman RL. Human megakaryocytes. II. Expression of platelet proteins in early marrow megakaryocytes. J Exp Med. 1981;154:88–100.CrossRefPubMed
17.
go back to reference Kanz L, Mielke R, Fauser AA. Analysis of human hemopoietic progenitor cells for the expression of glycoprotein IIIa. Exp Hematol. 1988;16:741–7.PubMed Kanz L, Mielke R, Fauser AA. Analysis of human hemopoietic progenitor cells for the expression of glycoprotein IIIa. Exp Hematol. 1988;16:741–7.PubMed
18.
go back to reference Debili N, Issaad C, Masse JM, Guichard J, Katz A, Breton-Gorius J, et al. Expression of CD34 and platelet glycoproteins during human megakaryocytic differentiation. Blood. 1992;80:3022–35.PubMed Debili N, Issaad C, Masse JM, Guichard J, Katz A, Breton-Gorius J, et al. Expression of CD34 and platelet glycoproteins during human megakaryocytic differentiation. Blood. 1992;80:3022–35.PubMed
19.
go back to reference Bhatia S. Therapy-related myelodysplasia and acute myeloid leukemia. Semin Oncol. 2013;40:666–75.CrossRefPubMed Bhatia S. Therapy-related myelodysplasia and acute myeloid leukemia. Semin Oncol. 2013;40:666–75.CrossRefPubMed
20.
go back to reference Sekeres MA, Gerds AT. Established and novel agents for myelodysplastic syndromes. Hematol Am Soc Hematol Educ Progr. 2014;2014:82–9.CrossRef Sekeres MA, Gerds AT. Established and novel agents for myelodysplastic syndromes. Hematol Am Soc Hematol Educ Progr. 2014;2014:82–9.CrossRef
21.
go back to reference Lausen B, Schumacher M. Maximally selected rank statistics. Biometrics. 1992: 73–85. Lausen B, Schumacher M. Maximally selected rank statistics. Biometrics. 1992: 73–85.
22.
go back to reference Altman DG, Lausen B, Sauerbrei W, Schumacher M. Dangers of using “optimal” cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst. 1994;86:829–35.CrossRefPubMed Altman DG, Lausen B, Sauerbrei W, Schumacher M. Dangers of using “optimal” cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst. 1994;86:829–35.CrossRefPubMed
23.
go back to reference Therneau TM, Grambsch PM, Fleming TR. Martingale-based residuals for survival models. Biometrika. 1990;77:147–60.CrossRef Therneau TM, Grambsch PM, Fleming TR. Martingale-based residuals for survival models. Biometrika. 1990;77:147–60.CrossRef
24.
go back to reference Das R, Hayer J, Dey P, Garewal G. Comparative study of myelodysplastic syndromes and normal bone marrow biopsies with conventional staining and immunocytochemistry. Anal Quant Cytol Histol. 2005;27:152–6.PubMed Das R, Hayer J, Dey P, Garewal G. Comparative study of myelodysplastic syndromes and normal bone marrow biopsies with conventional staining and immunocytochemistry. Anal Quant Cytol Histol. 2005;27:152–6.PubMed
25.
go back to reference Lai JL, Preudhomme C, Zandecki M, Flactif M, Vanrumbeke M, Lepelley P, et al. Myelodysplastic syndromes and acute myeloid leukemia with 17p deletion. An entity characterized by specific dysgranulopoiesis and a high incidence of P53 mutations. Leukemia. 1995;9:370–81.PubMed Lai JL, Preudhomme C, Zandecki M, Flactif M, Vanrumbeke M, Lepelley P, et al. Myelodysplastic syndromes and acute myeloid leukemia with 17p deletion. An entity characterized by specific dysgranulopoiesis and a high incidence of P53 mutations. Leukemia. 1995;9:370–81.PubMed
26.
go back to reference Germing U, Gattermann N, Strupp C, Aivado M, Aul C. Validation of the WHO proposals for a new classification of primary myelodysplastic syndromes: a retrospective analysis of 1600 patients. Leukemia Res. 2000;24:983–92.CrossRef Germing U, Gattermann N, Strupp C, Aivado M, Aul C. Validation of the WHO proposals for a new classification of primary myelodysplastic syndromes: a retrospective analysis of 1600 patients. Leukemia Res. 2000;24:983–92.CrossRef
27.
go back to reference Matsuda A, Germing U, Jinnai I, Misumi M, Kuendgen A, Knipp S, et al. Difference in clinical features between Japanese and German patients with refractory anemia in myelodysplastic syndromes. Blood. 2005;106:2633–40.CrossRefPubMed Matsuda A, Germing U, Jinnai I, Misumi M, Kuendgen A, Knipp S, et al. Difference in clinical features between Japanese and German patients with refractory anemia in myelodysplastic syndromes. Blood. 2005;106:2633–40.CrossRefPubMed
Metadata
Title
A systematic classification of megakaryocytic dysplasia and its impact on prognosis for patients with myelodysplastic syndromes
Authors
Gege Feng
Robert Peter Gale
Wen Cui
Wenyu Cai
Gang Huang
Zefeng Xu
Tiejun Qin
Yue Zhang
Bing Li
Liwei Fang
Hongli Zhang
Lijuan Pan
Naibo Hu
Shiqiang Qu
Jingya Wang
Yajuan Cui
Zhijian Xiao
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Experimental Hematology & Oncology / Issue 1/2015
Electronic ISSN: 2162-3619
DOI
https://doi.org/10.1186/s40164-016-0041-6

Other articles of this Issue 1/2015

Experimental Hematology & Oncology 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine