Skip to main content
Top
Published in: Experimental Hematology & Oncology 1/2015

Open Access 01-12-2015 | Research

Tissue factor-dependent and -independent pathways of systemic coagulation activation in acute myeloid leukemia: a single-center cohort study

Authors: Christina Dicke, Ali Amirkhosravi, Brigitte Spath, Miguel Jiménez-Alcázar, Tobias Fuchs, Monica Davila, John L Francis, Carsten Bokemeyer, Florian Langer

Published in: Experimental Hematology & Oncology | Issue 1/2015

Login to get access

Abstract

Background

In acute myeloid leukemia (AML), disseminated intravascular coagulation (DIC) contributes to morbidity and mortality, but the underlying pathomechanisms remain incompletely understood.

Methods

We conducted a prospective study on 69 patients with newly diagnosed AML to further define the correlates of systemic coagulation activation in this hematological malignancy. Tissue factor procoagulant activity (TF PCA) of isolated peripheral blood mononuclear cells (PBMCs) and TF expression by circulating microparticles (MPs) were assessed by single-stage clotting and thrombin generation assay, respectively. Soluble plasma TF antigen and secretion of vascular endothelial growth factor (VEGF) by cultured PBMCs were measured by ELISA. Cell-free plasma DNA was quantified by staining with a fluorescent dye.

Result

TF PCA of PBMCs was significantly increased in AML patients as compared to healthy controls. Furthermore, TF PCA was significantly associated with decompensated DIC at presentation, as defined by a plasma fibrinogen level of ≤1 g/L (n = 11). In addition to TF PCA and circulating blasts, serum lactate dehydrogenase, a surrogate marker for leukemic cell turnover, correlated with plasma D-Dimer in the total patient cohort and was significantly increased in DIC patients, suggesting a role for myeloblast apoptosis/necrosis in activation of the TF-dependent coagulation pathway. Consistently, TF-bearing plasma MPs were more frequently detected and levels of soluble TF antigen were significantly higher in DIC vs. non-DIC patients. No association was found between TF PCA expression and VEGF secretion by isolated PBMCs, but significantly increased levels of cell-free plasma DNA pointed to a contribution of the intrinsic contact pathway to systemic coagulation activation in the total patient cohort and in patients with lower TF PCA expression. While PBMC-associated TF PCA had no effect on long-term survival, DIC occurrence at presentation increased the risk of early mortality.

Conclusion

In newly diagnosed AML, TF expression by PBMCs and shedding of TF-bearing plasma MPs are central to the pathogenesis of DIC, but additional pathways, such as DNA liberation, may contribute to systemic coagulation activation.
Literature
1.
5.
go back to reference Andoh K, Kubota T, Takada M, Tanaka H, Kobayashi N, Maekawa T. Tissue factor activity in leukemia cells. Special reference to disseminated intravascular coagulation. Cancer. 1987;59(4):748–54.PubMedCrossRef Andoh K, Kubota T, Takada M, Tanaka H, Kobayashi N, Maekawa T. Tissue factor activity in leukemia cells. Special reference to disseminated intravascular coagulation. Cancer. 1987;59(4):748–54.PubMedCrossRef
6.
go back to reference Bauer KA, Conway EM, Bach R, Konigsberg WH, Griffin JD, Demetri G. Tissue factor gene expression in acute myeloblastic leukemia. Thromb Res. 1989;56(3):425–30.PubMedCrossRef Bauer KA, Conway EM, Bach R, Konigsberg WH, Griffin JD, Demetri G. Tissue factor gene expression in acute myeloblastic leukemia. Thromb Res. 1989;56(3):425–30.PubMedCrossRef
7.
go back to reference Tanaka M, Yamanishi H. The expression of tissue factor antigen and activity on the surface of leukemic cells. Leuk Res. 1993;17(2):103–11.PubMedCrossRef Tanaka M, Yamanishi H. The expression of tissue factor antigen and activity on the surface of leukemic cells. Leuk Res. 1993;17(2):103–11.PubMedCrossRef
8.
go back to reference Lopez-Pedrera C, Jardi M, del Mar Malagon M, Ingles-Esteve J, Dorado G, Torres A, et al. Tissue factor (TF) and urokinase plasminogen activator receptor (uPAR) and bleeding complications in leukemic patients. Thromb Haemost. 1997;77(1):62–70.PubMed Lopez-Pedrera C, Jardi M, del Mar Malagon M, Ingles-Esteve J, Dorado G, Torres A, et al. Tissue factor (TF) and urokinase plasminogen activator receptor (uPAR) and bleeding complications in leukemic patients. Thromb Haemost. 1997;77(1):62–70.PubMed
9.
go back to reference Negaard HF, Iversen PO, Ostenstad B, Iversen N, Holme PA, Sandset PM. Hypercoagulability in patients with haematological neoplasia: no apparent initiation by tissue factor. Thromb Haemost. 2008;99(6):1040–8. doi:10.1160/TH07-09-0541.PubMed Negaard HF, Iversen PO, Ostenstad B, Iversen N, Holme PA, Sandset PM. Hypercoagulability in patients with haematological neoplasia: no apparent initiation by tissue factor. Thromb Haemost. 2008;99(6):1040–8. doi:10.​1160/​TH07-09-0541.PubMed
11.
go back to reference Taylor FB Jr, Toh CH, Hoots WK, Wada H, Levi M. Scientific Subcommittee on Disseminated Intravascular Coagulation of the International Society on Thrombosis and Haemostasis (ISTH). Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86(5):1327–30.PubMed Taylor FB Jr, Toh CH, Hoots WK, Wada H, Levi M. Scientific Subcommittee on Disseminated Intravascular Coagulation of the International Society on Thrombosis and Haemostasis (ISTH). Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86(5):1327–30.PubMed
12.
go back to reference Langer F, Bokemeyer C. Crosstalk between cancer and haemostasis. Implications for cancer biology and cancer-associated thrombosis with focus on tissue factor. Hamostaseologie. 2012;32(2):95–104. doi:10.5482/ha-1160.PubMedCrossRef Langer F, Bokemeyer C. Crosstalk between cancer and haemostasis. Implications for cancer biology and cancer-associated thrombosis with focus on tissue factor. Hamostaseologie. 2012;32(2):95–104. doi:10.​5482/​ha-1160.PubMedCrossRef
13.
go back to reference Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M, et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood. 1997;89(6):1870–5.PubMed Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M, et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood. 1997;89(6):1870–5.PubMed
14.
go back to reference Aguayo A, Estey E, Kantarjian H, Mansouri T, Gidel C, Keating M, et al. Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia. Blood. 1999;94(11):3717–21.PubMed Aguayo A, Estey E, Kantarjian H, Mansouri T, Gidel C, Keating M, et al. Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia. Blood. 1999;94(11):3717–21.PubMed
15.
go back to reference Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood. 2000;95(1):309–13.PubMed Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood. 2000;95(1):309–13.PubMed
16.
go back to reference Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D, et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood. 2000;96(6):2240–5.PubMed Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D, et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood. 2000;96(6):2240–5.PubMed
18.
go back to reference Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887–96. doi:10.1038/nm.2184.PubMedCrossRef Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887–96. doi:10.​1038/​nm.​2184.PubMedCrossRef
20.
go back to reference Diaz JA, Fuchs TA, Jackson TO, Kremer Hovinga JA, Lammle B, Henke PK, et al. Plasma DNA is elevated in patients with deep vein thrombosis. J Vasc Surg Venous Lymphat Disord. 2013;1(4). doi:10.1016/j.jvsv.2012.12.002. Diaz JA, Fuchs TA, Jackson TO, Kremer Hovinga JA, Lammle B, Henke PK, et al. Plasma DNA is elevated in patients with deep vein thrombosis. J Vasc Surg Venous Lymphat Disord. 2013;1(4). doi:10.​1016/​j.​jvsv.​2012.​12.​002.
21.
go back to reference van Montfoort ML, Stephan F, Lauw MN, Hutten BA, Van Mierlo GJ, Solati S, et al. Circulating nucleosomes and neutrophil activation as risk factors for deep vein thrombosis. Arterioscler Thromb Vasc Biol. 2013;33(1):147–51. doi:10.1161/ATVBAHA.112.300498.PubMedCrossRef van Montfoort ML, Stephan F, Lauw MN, Hutten BA, Van Mierlo GJ, Solati S, et al. Circulating nucleosomes and neutrophil activation as risk factors for deep vein thrombosis. Arterioscler Thromb Vasc Biol. 2013;33(1):147–51. doi:10.​1161/​ATVBAHA.​112.​300498.PubMedCrossRef
25.
go back to reference Drake TA, Ruf W, Morrissey JH, Edgington TS. Functional tissue factor is entirely cell surface expressed on lipopolysaccharide-stimulated human blood monocytes and a constitutively tissue factor-producing neoplastic cell line. J Cell Biol. 1989;109(1):389–95.PubMedCrossRef Drake TA, Ruf W, Morrissey JH, Edgington TS. Functional tissue factor is entirely cell surface expressed on lipopolysaccharide-stimulated human blood monocytes and a constitutively tissue factor-producing neoplastic cell line. J Cell Biol. 1989;109(1):389–95.PubMedCrossRef
26.
go back to reference Langer F, Amirkhosravi A, Loges S, Meyer T, Eifrig B, Hossfeld DK, et al. An in vitro study on the mechanisms of coagulation activation in acute myelogenous leukemia (AML): role of tissue factor regulation by cytotoxic drugs and GM-CSF. Thromb Haemost. 2004;92(5):1136–46. doi:10.1267/THRO040511136.PubMed Langer F, Amirkhosravi A, Loges S, Meyer T, Eifrig B, Hossfeld DK, et al. An in vitro study on the mechanisms of coagulation activation in acute myelogenous leukemia (AML): role of tissue factor regulation by cytotoxic drugs and GM-CSF. Thromb Haemost. 2004;92(5):1136–46. doi:10.​1267/​THRO040511136.PubMed
28.
go back to reference Bach RR, Moldow CF. Mechanism of tissue factor activation on HL-60 cells. Blood. 1997;89(9):3270–6.PubMed Bach RR, Moldow CF. Mechanism of tissue factor activation on HL-60 cells. Blood. 1997;89(9):3270–6.PubMed
29.
go back to reference Boles JC, Williams JC, Hollingsworth RM, Wang JG, Glover SL, Owens AP III, et al. Anthracycline treatment of the human monocytic leukemia cell line THP-1 increases phosphatidylserine exposure and tissue factor activity. Thromb Res. 2012;129(2):197–203. doi:10.1016/j.thromres.2011.06.022.PubMedCrossRef Boles JC, Williams JC, Hollingsworth RM, Wang JG, Glover SL, Owens AP III, et al. Anthracycline treatment of the human monocytic leukemia cell line THP-1 increases phosphatidylserine exposure and tissue factor activity. Thromb Res. 2012;129(2):197–203. doi:10.​1016/​j.​thromres.​2011.​06.​022.PubMedCrossRef
33.
35.
go back to reference Parhami-Seren B, Butenas S, Krudysz-Amblo J, Mann KG. Immunologic quantitation of tissue factors. J Thromb Haemost. 2006;4(8):1747–55.PubMedCrossRef Parhami-Seren B, Butenas S, Krudysz-Amblo J, Mann KG. Immunologic quantitation of tissue factors. J Thromb Haemost. 2006;4(8):1747–55.PubMedCrossRef
38.
go back to reference von Bruhl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35. doi:10.1084/jem.20112322.CrossRef von Bruhl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35. doi:10.​1084/​jem.​20112322.CrossRef
39.
go back to reference Falanga A, Alessio MG, Donati MB, Barbui T. A new procoagulant in acute leukemia. Blood. 1988;71(4):870–5.PubMed Falanga A, Alessio MG, Donati MB, Barbui T. A new procoagulant in acute leukemia. Blood. 1988;71(4):870–5.PubMed
40.
go back to reference Kazmierczak M, Lewandowski K, Wojtukiewicz MZ, Turowiecka Z, Kolacz E, Lojko A, et al. Cancer procoagulant in patients with adenocarcinomas. Blood Coagul Fibrinolysis. 2005;16(8):543–7.PubMedCrossRef Kazmierczak M, Lewandowski K, Wojtukiewicz MZ, Turowiecka Z, Kolacz E, Lojko A, et al. Cancer procoagulant in patients with adenocarcinomas. Blood Coagul Fibrinolysis. 2005;16(8):543–7.PubMedCrossRef
41.
go back to reference Abe K, Shoji M, Chen J, Bierhaus A, Danave I, Micko C, et al. Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc Natl Acad Sci USA. 1999;96(15):8663–8.PubMedCentralPubMedCrossRef Abe K, Shoji M, Chen J, Bierhaus A, Danave I, Micko C, et al. Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc Natl Acad Sci USA. 1999;96(15):8663–8.PubMedCentralPubMedCrossRef
43.
45.
go back to reference Barbarroja N, Aristides-Torres L, Hernandez V, Martin C, Dorado G, Torres A, et al. Coordinated deregulation of cellular receptors, proangiogenic factors and intracellular pathways in acute myeloid leukaemia. Leuk Lymphoma. 2007;48(6):1187–99. doi:10.1080/10428190701340616.PubMedCrossRef Barbarroja N, Aristides-Torres L, Hernandez V, Martin C, Dorado G, Torres A, et al. Coordinated deregulation of cellular receptors, proangiogenic factors and intracellular pathways in acute myeloid leukaemia. Leuk Lymphoma. 2007;48(6):1187–99. doi:10.​1080/​1042819070134061​6.PubMedCrossRef
47.
go back to reference Langer F, Spath B, Haubold K, Holstein K, Marx G, Wierecky J, et al. Tissue factor procoagulant activity of plasma microparticles in patients with cancer-associated disseminated intravascular coagulation. Ann Hematol. 2008;87(6):451–7. doi:10.1007/s00277-008-0446-3.PubMedCrossRef Langer F, Spath B, Haubold K, Holstein K, Marx G, Wierecky J, et al. Tissue factor procoagulant activity of plasma microparticles in patients with cancer-associated disseminated intravascular coagulation. Ann Hematol. 2008;87(6):451–7. doi:10.​1007/​s00277-008-0446-3.PubMedCrossRef
48.
go back to reference Hemker HC, Giesen P, Al Dieri R, Regnault V, de Smedt E, Wagenvoord R, et al. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb. 2003;33(1):4–15.PubMedCrossRef Hemker HC, Giesen P, Al Dieri R, Regnault V, de Smedt E, Wagenvoord R, et al. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb. 2003;33(1):4–15.PubMedCrossRef
49.
go back to reference Hemker HC, Beguin S. Thrombin generation in plasma: its assessment via the endogenous thrombin potential. Thromb Haemost. 1995;74(1):134–8.PubMed Hemker HC, Beguin S. Thrombin generation in plasma: its assessment via the endogenous thrombin potential. Thromb Haemost. 1995;74(1):134–8.PubMed
Metadata
Title
Tissue factor-dependent and -independent pathways of systemic coagulation activation in acute myeloid leukemia: a single-center cohort study
Authors
Christina Dicke
Ali Amirkhosravi
Brigitte Spath
Miguel Jiménez-Alcázar
Tobias Fuchs
Monica Davila
John L Francis
Carsten Bokemeyer
Florian Langer
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Experimental Hematology & Oncology / Issue 1/2015
Electronic ISSN: 2162-3619
DOI
https://doi.org/10.1186/s40164-015-0018-x

Other articles of this Issue 1/2015

Experimental Hematology & Oncology 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine