Skip to main content
Top
Published in: Translational Neurodegeneration 1/2017

Open Access 01-12-2017 | Research

Serial deletion reveals structural basis and stability for the core enzyme activity of human glutaminase 1 isoforms: relevance to excitotoxic neurodegeneration

Authors: Yuju Li, Justin Peer, Runze Zhao, Yinghua Xu, Beiqing Wu, Yi Wang, Changhai Tian, Yunlong Huang, Jialin Zheng

Published in: Translational Neurodegeneration | Issue 1/2017

Login to get access

Abstract

Background

Glutaminase 1 is a phosphate-activated metabolic enzyme that catalyzes the first step of glutaminolysis, which converts glutamine into glutamate. Glutamate is the major neurotransmitter of excitatory synapses, executing important physiological functions in the central nervous system. There are two isoforms of glutaminase 1, KGA and GAC, both of which are generated through alternative splicing from the same gene. KGA and GAC both transcribe 1–14 exons in the N-terminal, but each has its unique C-terminal in the coding sequence. We have previously identified that KGA and GAC are differentially regulated during inflammatory stimulation and HIV infection. Furthermore, glutaminase 1 has been linked to brain diseases such as amyotrophic lateral sclerosis, Alzheimer’s disease, and hepatic encephalopathy. Core enzyme structure of KGA and GAC has been published recently. However, how other coding sequences affect their functional enzyme activity remains unclear.

Methods

We cloned and performed serial deletions of human full-length KGA and GAC from the N-terminal and the C-terminal at an interval of approximately 100 amino acids (AAs). Prokaryotic expressions of the mutant glutaminase 1 protein and a glutaminase enzyme activity assay were used to determine if KGA and GAC have similar efficiency and efficacy to convert glutamine into glutamate.

Results

When 110 AAs or 218 AAs were deleted from the N-terminal or when the unique portions of KGA and GAC that are beyond the 550 AA were deleted from the C-terminal, KGA and GAC retained enzyme activity comparable to the full length proteins. In contrast, deletion of 310 AAs or more from N-terminal or deletion of 450 AAs or more from C-terminal resulted in complete loss of enzyme activity for KGA/GAC. Consistently, when both N- and C-terminal of the KGA and GAC were removed, creating a truncated protein that expressed the central 219 AA - 550 AA, the protein retained enzyme activity. Furthermore, expression of the core 219 AA - 550 AA coding sequence in cells increased extracellular glutamate concentrations to levels comparable to those of full-length KGA and GAC expressions, suggesting that the core enzyme activity of the protein lies within the central 219 AA - 550 AA. Full-length KGA and GAC retained enzyme activities when kept at 4 °C. In contrast, 219 AA - 550 AA truncated protein lost glutaminase activities more readily compared with full-length KGA and GAC, suggesting that the N-terminal and C-terminal coding regions are required for the stability KGA and GAC.

Conclusions

Glutaminase isoforms KGA and GAC have similar efficacy to catalyze the conversion of glutamine to glutamate. The core enzyme activity of glutaminase 1 protein is within the central 219 AA - 550 AA. The N-terminal and C-terminal coding regions of KGA and GAC help maintain the long-term activities of the enzymes.
Literature
1.
go back to reference Shapiro RA, Haser WG, Curthoys NP. The orientation of phosphate-dependent glutaminase on the inner membrane of rat renal mitochondria. Arch Biochem Biophys. 1985;243:1–7.CrossRefPubMed Shapiro RA, Haser WG, Curthoys NP. The orientation of phosphate-dependent glutaminase on the inner membrane of rat renal mitochondria. Arch Biochem Biophys. 1985;243:1–7.CrossRefPubMed
2.
go back to reference Shapiro RA, Farrell L, Srinivasan M, Curthoys NP. Isolation, characterization, and in vitro expression of a cDNA that encodes the kidney isoenzyme of the mitochondrial glutaminase. J Biol Chem. 1991;266:18792–6.PubMed Shapiro RA, Farrell L, Srinivasan M, Curthoys NP. Isolation, characterization, and in vitro expression of a cDNA that encodes the kidney isoenzyme of the mitochondrial glutaminase. J Biol Chem. 1991;266:18792–6.PubMed
3.
go back to reference Laake JH, Takumi Y, Eidet J, Torgner IA, Roberg B, Kvamme E, Ottersen OP. Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience. 1999;88:1137–51.CrossRefPubMed Laake JH, Takumi Y, Eidet J, Torgner IA, Roberg B, Kvamme E, Ottersen OP. Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience. 1999;88:1137–51.CrossRefPubMed
4.
go back to reference Erdmann NB, Whitney NP, Zheng J. Potentiation of Excitotoxicity in HIV-1 Associated Dementia and the Significance of Glutaminase. Clin Neurosci Res. 2006;6:315–28.CrossRefPubMedPubMedCentral Erdmann NB, Whitney NP, Zheng J. Potentiation of Excitotoxicity in HIV-1 Associated Dementia and the Significance of Glutaminase. Clin Neurosci Res. 2006;6:315–28.CrossRefPubMedPubMedCentral
5.
go back to reference Mock B, Kozak C, Seldin MF, Ruff N, D'Hoostelaere L, Szpirer C, Levan G, Seuanez H, O'Brien S, Banner C. A glutaminase (gis) gene maps to mouse chromosome 1, rat chromosome 9, and human chromosome 2. Genomics. 1989;5:291–7.CrossRefPubMed Mock B, Kozak C, Seldin MF, Ruff N, D'Hoostelaere L, Szpirer C, Levan G, Seuanez H, O'Brien S, Banner C. A glutaminase (gis) gene maps to mouse chromosome 1, rat chromosome 9, and human chromosome 2. Genomics. 1989;5:291–7.CrossRefPubMed
6.
go back to reference Elgadi KM, Meguid RA, Qian M, Souba WW, Abcouwer SF. Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing. Physiol Genomics. 1999;1:51–62.PubMed Elgadi KM, Meguid RA, Qian M, Souba WW, Abcouwer SF. Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing. Physiol Genomics. 1999;1:51–62.PubMed
8.
go back to reference Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV, Cerione RA. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2010;18:207–19.CrossRefPubMedPubMedCentral Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV, Cerione RA. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2010;18:207–19.CrossRefPubMedPubMedCentral
9.
go back to reference Kenny J, Bao Y, Hamm B, Taylor L, Toth A, Wagers B, Curthoys NP. Bacterial expression, purification, and characterization of rat kidney-type mitochondrial glutaminase. Protein Expr Purif. 2003;31:140–8.CrossRefPubMed Kenny J, Bao Y, Hamm B, Taylor L, Toth A, Wagers B, Curthoys NP. Bacterial expression, purification, and characterization of rat kidney-type mitochondrial glutaminase. Protein Expr Purif. 2003;31:140–8.CrossRefPubMed
10.
go back to reference Brosnan JT, Ewart HS, Squires SA. Hormonal control of hepatic glutaminase. Adv Enzyme Regul. 1995;35:131–46.CrossRefPubMed Brosnan JT, Ewart HS, Squires SA. Hormonal control of hepatic glutaminase. Adv Enzyme Regul. 1995;35:131–46.CrossRefPubMed
11.
go back to reference Mates JM, Perez-Gomez C, Nunez de Castro I, Asenjo M, Marquez J. Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem Cell Biol. 2002;34:439–58.CrossRefPubMed Mates JM, Perez-Gomez C, Nunez de Castro I, Asenjo M, Marquez J. Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem Cell Biol. 2002;34:439–58.CrossRefPubMed
12.
go back to reference Backos DS, Franklin CC, Reigan P. The role of glutathione in brain tumor drug resistance. Biochem Pharmacol. 2012;83:1005–12.CrossRefPubMed Backos DS, Franklin CC, Reigan P. The role of glutathione in brain tumor drug resistance. Biochem Pharmacol. 2012;83:1005–12.CrossRefPubMed
13.
go back to reference Szeliga M, Matyja E, Obara M, Grajkowska W, Czernicki T, Albrecht J. Relative expression of mRNAS coding for glutaminase isoforms in CNS tissues and CNS tumors. Neurochem Res. 2008;33:808–13.CrossRefPubMed Szeliga M, Matyja E, Obara M, Grajkowska W, Czernicki T, Albrecht J. Relative expression of mRNAS coding for glutaminase isoforms in CNS tissues and CNS tumors. Neurochem Res. 2008;33:808–13.CrossRefPubMed
14.
go back to reference Rao VL, Baskaya MK, Dogan A, Rothstein JD, Dempsey RJ. Traumatic brain injury down-regulates glial glutamate transporter (GLT-1 and GLAST) proteins in rat brain. J Neurochem. 1998;70:2020–7.PubMed Rao VL, Baskaya MK, Dogan A, Rothstein JD, Dempsey RJ. Traumatic brain injury down-regulates glial glutamate transporter (GLT-1 and GLAST) proteins in rat brain. J Neurochem. 1998;70:2020–7.PubMed
15.
go back to reference Benveniste H. Glutamate, microdialysis, and cerebral ischemia: lost in translation? Anesthesiology. 2009;110:422–5.PubMed Benveniste H. Glutamate, microdialysis, and cerebral ischemia: lost in translation? Anesthesiology. 2009;110:422–5.PubMed
16.
go back to reference Xu GY, Hughes MG, Ye Z, Hulsebosch CE, McAdoo DJ. Concentrations of glutamate released following spinal cord injury kill oligodendrocytes in the spinal cord. Exp Neurol. 2004;187:329–36.CrossRefPubMed Xu GY, Hughes MG, Ye Z, Hulsebosch CE, McAdoo DJ. Concentrations of glutamate released following spinal cord injury kill oligodendrocytes in the spinal cord. Exp Neurol. 2004;187:329–36.CrossRefPubMed
17.
go back to reference Kanellopoulos GK, Xu XM, Hsu CY, Lu X, Sundt TM, Kouchoukos NT. White matter injury in spinal cord ischemia: protection by AMPA/kainate glutamate receptor antagonism. Stroke. 2000;31:1945–52.CrossRefPubMed Kanellopoulos GK, Xu XM, Hsu CY, Lu X, Sundt TM, Kouchoukos NT. White matter injury in spinal cord ischemia: protection by AMPA/kainate glutamate receptor antagonism. Stroke. 2000;31:1945–52.CrossRefPubMed
18.
go back to reference Huang Y, Zhao L, Jia B, Wu L, Li Y, Curthoys N, Zheng JC. Glutaminase dysregulation in HIV-1-infected human microglia mediates neurotoxicity: relevant to HIV-1-associated neurocognitive disorders. J Neurosci. 2011;31:15195–204.CrossRefPubMedPubMedCentral Huang Y, Zhao L, Jia B, Wu L, Li Y, Curthoys N, Zheng JC. Glutaminase dysregulation in HIV-1-infected human microglia mediates neurotoxicity: relevant to HIV-1-associated neurocognitive disorders. J Neurosci. 2011;31:15195–204.CrossRefPubMedPubMedCentral
19.
go back to reference Zhao L, Huang Y, Tian C, Taylor L, Curthoys N, Wang Y, Vernon H, Zheng J. Interferon-α regulates glutaminase 1 promoter through STAT1 phosphorylation: Relevance to HIV-1 associated neurocognitive disorders. PLoS ONE. 2012;7:e32995.CrossRefPubMedPubMedCentral Zhao L, Huang Y, Tian C, Taylor L, Curthoys N, Wang Y, Vernon H, Zheng J. Interferon-α regulates glutaminase 1 promoter through STAT1 phosphorylation: Relevance to HIV-1 associated neurocognitive disorders. PLoS ONE. 2012;7:e32995.CrossRefPubMedPubMedCentral
20.
go back to reference Werner P, Pitt D, Raine CS. Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol. 2001;50:169–80.CrossRefPubMed Werner P, Pitt D, Raine CS. Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol. 2001;50:169–80.CrossRefPubMed
21.
go back to reference Burbaeva G, Boksha IS, Tereshkina EB, Savushkina OK, Prokhorova TA, Vorobyeva EA. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase. Cerebellum. 2014;13:607–15.CrossRefPubMed Burbaeva G, Boksha IS, Tereshkina EB, Savushkina OK, Prokhorova TA, Vorobyeva EA. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase. Cerebellum. 2014;13:607–15.CrossRefPubMed
22.
go back to reference D'Alessandro G, Calcagno E, Tartari S, Rizzardini M, Invernizzi RW, Cantoni L. Glutamate and glutathione interplay in a motor neuronal model of amyotrophic lateral sclerosis reveals altered energy metabolism. Neurobiol Dis. 2011;43:346–55.CrossRefPubMed D'Alessandro G, Calcagno E, Tartari S, Rizzardini M, Invernizzi RW, Cantoni L. Glutamate and glutathione interplay in a motor neuronal model of amyotrophic lateral sclerosis reveals altered energy metabolism. Neurobiol Dis. 2011;43:346–55.CrossRefPubMed
23.
go back to reference Gluck MR, Thomas RG, Davis KL, Haroutunian V. Implications for altered glutamate and GABA metabolism in the dorsolateral prefrontal cortex of aged schizophrenic patients. Am J Psychiatry. 2002;159:1165–73.CrossRefPubMed Gluck MR, Thomas RG, Davis KL, Haroutunian V. Implications for altered glutamate and GABA metabolism in the dorsolateral prefrontal cortex of aged schizophrenic patients. Am J Psychiatry. 2002;159:1165–73.CrossRefPubMed
24.
go back to reference Wu B, Huang Y, Braun AL, Tong Z, Zhao R, Li Y, Liu F, Zheng JC. Glutaminase-containing microvesicles from HIV-1-infected macrophages and immune-activated microglia induce neurotoxicity. Mol Neurodegener. 2015;10:61.CrossRefPubMedPubMedCentral Wu B, Huang Y, Braun AL, Tong Z, Zhao R, Li Y, Liu F, Zheng JC. Glutaminase-containing microvesicles from HIV-1-infected macrophages and immune-activated microglia induce neurotoxicity. Mol Neurodegener. 2015;10:61.CrossRefPubMedPubMedCentral
25.
go back to reference Liu F, Huang Y, Zhang F, Chen Q, Wu B, Rui W, Zheng JC, Ding W. Macrophages treated with particulate matter PM2.5 induce selective neurotoxicity through glutaminase-mediated glutamate generation. J Neurochem. 2015;134:315–26.CrossRefPubMedPubMedCentral Liu F, Huang Y, Zhang F, Chen Q, Wu B, Rui W, Zheng JC, Ding W. Macrophages treated with particulate matter PM2.5 induce selective neurotoxicity through glutaminase-mediated glutamate generation. J Neurochem. 2015;134:315–26.CrossRefPubMedPubMedCentral
26.
go back to reference Mayer LB, Krawczyk M, Grunhage F, Lammert F, Stokes CS. A genetic variant in the promoter of phosphate-activated glutaminase is associated with hepatic encephalopathy. J Intern Med. 2015;278:313–22.CrossRefPubMed Mayer LB, Krawczyk M, Grunhage F, Lammert F, Stokes CS. A genetic variant in the promoter of phosphate-activated glutaminase is associated with hepatic encephalopathy. J Intern Med. 2015;278:313–22.CrossRefPubMed
27.
go back to reference Romero-Gomez M, Jover M, Del Campo JA, Royo JL, Hoyas E, Galan JJ, Montoliu C, Baccaro E, Guevara M, Cordoba J, et al. Variations in the promoter region of the glutaminase gene and the development of hepatic encephalopathy in patients with cirrhosis: a cohort study. Ann Intern Med. 2010;153:281–8.CrossRefPubMed Romero-Gomez M, Jover M, Del Campo JA, Royo JL, Hoyas E, Galan JJ, Montoliu C, Baccaro E, Guevara M, Cordoba J, et al. Variations in the promoter region of the glutaminase gene and the development of hepatic encephalopathy in patients with cirrhosis: a cohort study. Ann Intern Med. 2010;153:281–8.CrossRefPubMed
28.
go back to reference Sinsuwan S, Yongsawatdigul J, Chumseng S, Yamabhai M. Efficient expression and purification of recombinant glutaminase from Bacillus licheniformis (GlsA) in Escherichia coli. Protein Expr Purif. 2012;83:52–8.CrossRefPubMed Sinsuwan S, Yongsawatdigul J, Chumseng S, Yamabhai M. Efficient expression and purification of recombinant glutaminase from Bacillus licheniformis (GlsA) in Escherichia coli. Protein Expr Purif. 2012;83:52–8.CrossRefPubMed
29.
go back to reference Zhou J, Zhou J, Yang H, Yan C, Huang F. Characterization of a sodium-regulated glutaminase from cyanobacterium Synechocystis sp. PCC 6803. Sci China C Life Sci. 2008;51:1066–75.CrossRefPubMed Zhou J, Zhou J, Yang H, Yan C, Huang F. Characterization of a sodium-regulated glutaminase from cyanobacterium Synechocystis sp. PCC 6803. Sci China C Life Sci. 2008;51:1066–75.CrossRefPubMed
30.
go back to reference Zhou JX, Zhou J, Yang HM, Chen M, Huang F. Characterization of two glutaminases from the filamentous cyanobacterium Anabaena sp. PCC 7120. FEMS Microbiol Lett. 2008;289:241–9.CrossRefPubMed Zhou JX, Zhou J, Yang HM, Chen M, Huang F. Characterization of two glutaminases from the filamentous cyanobacterium Anabaena sp. PCC 7120. FEMS Microbiol Lett. 2008;289:241–9.CrossRefPubMed
31.
go back to reference Hashizume R, Maki Y, Mizutani K, Takahashi N, Matsubara H, Sugita A, Sato K, Yamaguchi S, Mikami B. Crystal structures of protein glutaminase and its pro forms converted into enzyme-substrate complex. J Biol Chem. 2011;286:38691–702.CrossRefPubMedPubMedCentral Hashizume R, Maki Y, Mizutani K, Takahashi N, Matsubara H, Sugita A, Sato K, Yamaguchi S, Mikami B. Crystal structures of protein glutaminase and its pro forms converted into enzyme-substrate complex. J Biol Chem. 2011;286:38691–702.CrossRefPubMedPubMedCentral
32.
go back to reference DeLaBarre B, Gross S, Fang C, Gao Y, Jha A, Jiang F, Song JJ, Wei W, Hurov JB. Full-length human glutaminase in complex with an allosteric inhibitor. Biochemistry. 2011;50:10764–70.CrossRefPubMed DeLaBarre B, Gross S, Fang C, Gao Y, Jha A, Jiang F, Song JJ, Wei W, Hurov JB. Full-length human glutaminase in complex with an allosteric inhibitor. Biochemistry. 2011;50:10764–70.CrossRefPubMed
33.
go back to reference Cassago A, Ferreira AP, Ferreira IM, Fornezari C, Gomes ER, Greene KS, Pereira HM, Garratt RC, Dias SM, Ambrosio AL. Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci U S A. 2012;109:1092–7.CrossRefPubMedPubMedCentral Cassago A, Ferreira AP, Ferreira IM, Fornezari C, Gomes ER, Greene KS, Pereira HM, Garratt RC, Dias SM, Ambrosio AL. Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci U S A. 2012;109:1092–7.CrossRefPubMedPubMedCentral
34.
go back to reference Thangavelu K, Pan CQ, Karlberg T, Balaji G, Uttamchandani M, Suresh V, Schuler H, Low BC, Sivaraman J. Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proc Natl Acad Sci U S A. 2012;109:7705–10.CrossRefPubMedPubMedCentral Thangavelu K, Pan CQ, Karlberg T, Balaji G, Uttamchandani M, Suresh V, Schuler H, Low BC, Sivaraman J. Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proc Natl Acad Sci U S A. 2012;109:7705–10.CrossRefPubMedPubMedCentral
35.
go back to reference Hartwick EW, Curthoys NP. BPTES inhibition of hGA(124-551), a truncated form of human kidney-type glutaminase. J Enzyme Inhib Med Chem. 2012;27:861–7.CrossRefPubMed Hartwick EW, Curthoys NP. BPTES inhibition of hGA(124-551), a truncated form of human kidney-type glutaminase. J Enzyme Inhib Med Chem. 2012;27:861–7.CrossRefPubMed
36.
go back to reference Curthoys NP, Weiss RF. Regulation of renal ammoniagenesis. Subcellular localization of rat kidney glutaminase isoenzymes. J Biol Chem. 1974;249:3261–6.PubMed Curthoys NP, Weiss RF. Regulation of renal ammoniagenesis. Subcellular localization of rat kidney glutaminase isoenzymes. J Biol Chem. 1974;249:3261–6.PubMed
37.
go back to reference Erdmann N, Zhao J, Lopez AL, Herek S, Curthoys N, Hexum TD, Tsukamoto T, Ferraris D, Zheng J. Glutamate production by HIV-1 infected human macrophage is blocked by the inhibition of glutaminase. J Neurochem. 2007;102:539–49.CrossRefPubMedPubMedCentral Erdmann N, Zhao J, Lopez AL, Herek S, Curthoys N, Hexum TD, Tsukamoto T, Ferraris D, Zheng J. Glutamate production by HIV-1 infected human macrophage is blocked by the inhibition of glutaminase. J Neurochem. 2007;102:539–49.CrossRefPubMedPubMedCentral
38.
go back to reference Deichmann U, Schuster S, Mazat JP, Cornish-Bowden A. Commemorating the 1913 Michaelis-Menten paper Die Kinetik der Invertinwirkung: three perspectives. FEBS J. 2014;281:435–63.CrossRefPubMed Deichmann U, Schuster S, Mazat JP, Cornish-Bowden A. Commemorating the 1913 Michaelis-Menten paper Die Kinetik der Invertinwirkung: three perspectives. FEBS J. 2014;281:435–63.CrossRefPubMed
39.
go back to reference Robinson MM, McBryant SJ, Tsukamoto T, Rojas C, Ferraris DV, Hamilton SK, Hansen JC, Curthoys NP. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J. 2007;406:407–14.CrossRefPubMedPubMedCentral Robinson MM, McBryant SJ, Tsukamoto T, Rojas C, Ferraris DV, Hamilton SK, Hansen JC, Curthoys NP. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J. 2007;406:407–14.CrossRefPubMedPubMedCentral
40.
go back to reference Curthoys NP, Kuhlenschmidt T, Godfrey SS, Weiss RF. Phosphate-dependent glutaminase from rat kidney. Cause of increased activity in response to acidosis and identity with glutaminase from other tissues. Arch Biochem Biophys. 1976;172:162–7.CrossRefPubMed Curthoys NP, Kuhlenschmidt T, Godfrey SS, Weiss RF. Phosphate-dependent glutaminase from rat kidney. Cause of increased activity in response to acidosis and identity with glutaminase from other tissues. Arch Biochem Biophys. 1976;172:162–7.CrossRefPubMed
41.
go back to reference Curthoys NP, Taylor L, Hoffert JD, Knepper MA. Proteomic analysis of the adaptive response of rat renal proximal tubules to metabolic acidosis. Am J Physiol Renal Physiol. 2007;292:F140–147.CrossRefPubMed Curthoys NP, Taylor L, Hoffert JD, Knepper MA. Proteomic analysis of the adaptive response of rat renal proximal tubules to metabolic acidosis. Am J Physiol Renal Physiol. 2007;292:F140–147.CrossRefPubMed
42.
go back to reference Zhao J, Lopez AL, Erichsen D, Herek S, Cotter RL, Curthoys NP, Zheng J. Mitochondrial glutaminase enhances extracellular glutamate production in HIV-1-infected macrophages: linkage to HIV-1 associated dementia. J Neurochem. 2004;88:169–80.CrossRefPubMed Zhao J, Lopez AL, Erichsen D, Herek S, Cotter RL, Curthoys NP, Zheng J. Mitochondrial glutaminase enhances extracellular glutamate production in HIV-1-infected macrophages: linkage to HIV-1 associated dementia. J Neurochem. 2004;88:169–80.CrossRefPubMed
43.
go back to reference Ye L, Huang Y, Zhao L, Li Y, Sun L, Zhou Y, Qian G, Zheng JC. IL-1beta and TNF-alpha induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem. 2013;125:897–908.CrossRefPubMedPubMedCentral Ye L, Huang Y, Zhao L, Li Y, Sun L, Zhou Y, Qian G, Zheng JC. IL-1beta and TNF-alpha induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem. 2013;125:897–908.CrossRefPubMedPubMedCentral
44.
go back to reference Shijie J, Takeuchi H, Yawata I, Harada Y, Sonobe Y, Doi Y, Liang J, Hua L, Yasuoka S, Zhou Y, et al. Blockade of glutamate release from microglia attenuates experimental autoimmune encephalomyelitis in mice. Tohoku J Exp Med. 2009;217:87–92.CrossRefPubMed Shijie J, Takeuchi H, Yawata I, Harada Y, Sonobe Y, Doi Y, Liang J, Hua L, Yasuoka S, Zhou Y, et al. Blockade of glutamate release from microglia attenuates experimental autoimmune encephalomyelitis in mice. Tohoku J Exp Med. 2009;217:87–92.CrossRefPubMed
45.
go back to reference van den Heuvel AP, Jing J, Wooster RF, Bachman KE. Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth. Cancer Biol Ther. 2012;13:1185–94.CrossRefPubMedPubMedCentral van den Heuvel AP, Jing J, Wooster RF, Bachman KE. Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth. Cancer Biol Ther. 2012;13:1185–94.CrossRefPubMedPubMedCentral
Metadata
Title
Serial deletion reveals structural basis and stability for the core enzyme activity of human glutaminase 1 isoforms: relevance to excitotoxic neurodegeneration
Authors
Yuju Li
Justin Peer
Runze Zhao
Yinghua Xu
Beiqing Wu
Yi Wang
Changhai Tian
Yunlong Huang
Jialin Zheng
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Translational Neurodegeneration / Issue 1/2017
Electronic ISSN: 2047-9158
DOI
https://doi.org/10.1186/s40035-017-0080-x

Other articles of this Issue 1/2017

Translational Neurodegeneration 1/2017 Go to the issue