Skip to main content
Top
Published in: Translational Neurodegeneration 1/2016

Open Access 01-12-2016 | Research

miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia – an exploratory study

Authors: Sofie Sølvsten Sørensen, Ann-Britt Nygaard, Thomas Christensen

Published in: Translational Neurodegeneration | Issue 1/2016

Login to get access

Abstract

Background

MicroRNAs (miRNAs) are small non-coding RNA molecules that function as posttranscriptional regulators of gene expression. Measurements of miRNAs in cerebrospinal fluid (CSF) and blood have just started gaining attention as a novel diagnostic tool for various neurological conditions. The purpose of this exploratory investigation was to analyze the expression of miRNAs in CSF and blood of patients with Alzheimer’s disease (AD) and other neurodegenerative disorders in order to identify potential miRNA biomarker candidates able to separate AD from other types of dementia.

Methods

CSF was collected by lumbar puncture performed on 10 patients diagnosed with AD and 10 patients diagnosed with either vascular dementia, frontotemporal dementia or dementia with Lewy bodies. Blood samples were taken immediately after. Total RNA was extracted from cell free fractions of CSF and plasma, and a screening for 372 known miRNA sequences was carried out by real time quantitative polymerase chain reactions (miRCURY LNA™ Universal RT miRNA PCR, Polyadenylation and cDNA synthesis kit, Exiqon).

Results

Fifty-two miRNAs were detected in CSF in at least nine out of ten patients in both groups. Among these, two miRNAs (let-7i-5p and miR-15a-5p) were found significantly up-regulated and one miRNA (miR-29c-3p) was found significantly down-regulated in patients with AD compared to controls. One hundred and sixty-eight miRNAs were frequently detected in the blood, among which miR-590-5p and miR-142-5p were significantly up-regulated and miR-194-5p was significantly down-regulated in AD patients compared to controls.

Conclusions

Detection of miRNA expression profiles in blood and in particular CSF of patients diagnosed with different types of dementia is feasible and it seems that several expressional differences between AD and other dementia types do exist when measured in a clinically relevant setup. In this explorative pilot study, the deregulated miRNAs in CSF of AD patients may be associated with relevant target genes related to AD pathology, including APP and BACE1, which suggests that miRNAs are interesting candidates for AD biomarkers in the future.
Appendix
Available only for authorised users
Literature
1.
go back to reference Qiu C, Fratiglioni L. Epidemiology of Alzheimer’s disease. In: Waldemar G, Burns A, editors. Alzheimer’s Disease. Oxford: Oxford Neuropsyciatric Library; 2009. p. 17–27. Qiu C, Fratiglioni L. Epidemiology of Alzheimer’s disease. In: Waldemar G, Burns A, editors. Alzheimer’s Disease. Oxford: Oxford Neuropsyciatric Library; 2009. p. 17–27.
2.
go back to reference Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9:63–75.CrossRefPubMed Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9:63–75.CrossRefPubMed
3.
go back to reference Wimo A, Jonsson L, Winblad B. An estimate of the worldwide prevalence and direct costs of dementia in 2003. Dement Geriatr Cogn Disord. 2006;21:175–81.CrossRefPubMed Wimo A, Jonsson L, Winblad B. An estimate of the worldwide prevalence and direct costs of dementia in 2003. Dement Geriatr Cogn Disord. 2006;21:175–81.CrossRefPubMed
4.
go back to reference LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci. 2007;8:499–509.CrossRefPubMed LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci. 2007;8:499–509.CrossRefPubMed
5.
go back to reference Ballatore C, Lee VM-Y, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8:663–72.CrossRefPubMed Ballatore C, Lee VM-Y, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8:663–72.CrossRefPubMed
6.
go back to reference Aliev G, Palacios HH, Walrafen B, Lipsitt AE, Obrenovich ME, Morales L. Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease. Int J Biochem Cell Biol. 2009;41:1989–2004.CrossRefPubMed Aliev G, Palacios HH, Walrafen B, Lipsitt AE, Obrenovich ME, Morales L. Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease. Int J Biochem Cell Biol. 2009;41:1989–2004.CrossRefPubMed
7.
go back to reference Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy S a, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy S a, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.
8.
go back to reference Rosa MI, Perucchi J, Medeiros LR, et al. Accuracy of cerebrospinal fluid Aβ(1–42) for Alzheimer’s disease diagnosis: a systematatic review and metaanalysis. J Alzheimers Dis. 2014;40:443–54.PubMed Rosa MI, Perucchi J, Medeiros LR, et al. Accuracy of cerebrospinal fluid Aβ(1–42) for Alzheimer’s disease diagnosis: a systematatic review and metaanalysis. J Alzheimers Dis. 2014;40:443–54.PubMed
9.
go back to reference Van Harten AC, Kester MI, Visser PJ, Blankenstein MA, Pijnenburg YAL, Van Der Flier WM, Scheltens P. Tau and p-tau as CSF biomarkers in dementia: A meta-analysis. Clin Chem Lab Med. 2011;49:353–66. Van Harten AC, Kester MI, Visser PJ, Blankenstein MA, Pijnenburg YAL, Van Der Flier WM, Scheltens P. Tau and p-tau as CSF biomarkers in dementia: A meta-analysis. Clin Chem Lab Med. 2011;49:353–66.
10.
go back to reference Wang W-X, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci. 2008;28:1213–23. Wang W-X, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci. 2008;28:1213–23.
11.
go back to reference Lei X, Lei L, Zhang Z, Zhang Z, Cheng Y. Downregulated miR-29c correlates with increased BACE1 expression in sporadic Alzheimer’ s disease. Int J Clin Exp Pathol. 2015;8:1565–74.PubMedPubMedCentral Lei X, Lei L, Zhang Z, Zhang Z, Cheng Y. Downregulated miR-29c correlates with increased BACE1 expression in sporadic Alzheimer’ s disease. Int J Clin Exp Pathol. 2015;8:1565–74.PubMedPubMedCentral
12.
go back to reference Nelson PT, Wang W-X. MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study. J Alzheimers Dis. 2010;21:75–9.PubMedPubMedCentral Nelson PT, Wang W-X. MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study. J Alzheimers Dis. 2010;21:75–9.PubMedPubMedCentral
13.
go back to reference Bekris LM, Lutz F, Montine TJ, Yu CE, Tsuang D, Peskind ER, Leverenz JB. MicroRNA in Alzheimer’s disease: an exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers. 2013;18:455–66. Bekris LM, Lutz F, Montine TJ, Yu CE, Tsuang D, Peskind ER, Leverenz JB. MicroRNA in Alzheimer’s disease: an exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers. 2013;18:455–66.
14.
go back to reference Wang W-X, Huang Q, Hu Y, Stromberg AJ, Nelson PT. Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol. 2011;121:193–205.CrossRefPubMedPubMedCentral Wang W-X, Huang Q, Hu Y, Stromberg AJ, Nelson PT. Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol. 2011;121:193–205.CrossRefPubMedPubMedCentral
15.
go back to reference Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A. 2008;105:6415–20. Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A. 2008;105:6415–20.
16.
go back to reference Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport. 2007;18:297–300.CrossRefPubMed Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport. 2007;18:297–300.CrossRefPubMed
17.
go back to reference Sethi P, Lukiw WJ. Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett. 2009;459:100–4.CrossRefPubMed Sethi P, Lukiw WJ. Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett. 2009;459:100–4.CrossRefPubMed
18.
go back to reference Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC. Identification of miRNA Changes in Alzheimer’ s Disease Brain and CSF Yields Putative Biomarkers and Insights into Disease Pathways. J Alzheimer’s Dis. 2008;14:27–41. Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC. Identification of miRNA Changes in Alzheimer’ s Disease Brain and CSF Yields Putative Biomarkers and Insights into Disease Pathways. J Alzheimer’s Dis. 2008;14:27–41.
19.
go back to reference Coolen M, Katz S, Bally-Cuif L. miR-9: a versatile regulator of neurogenesis. Front Cell Neurosci. 2013;7(November):220.PubMedPubMedCentral Coolen M, Katz S, Bally-Cuif L. miR-9: a versatile regulator of neurogenesis. Front Cell Neurosci. 2013;7(November):220.PubMedPubMedCentral
20.
go back to reference Lehmann SM, Krüger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D, Habbel P, Kälin R, Franzoni E, Rybak A, Nguyen D, Veh R, Ninnemann O, Peters O, Nitsch R, Heppner FL, Golenbock D, Schott E, Ploegh HL, Wulczyn FG, Lehnardt S. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci. 2012;15:827–35. Lehmann SM, Krüger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D, Habbel P, Kälin R, Franzoni E, Rybak A, Nguyen D, Veh R, Ninnemann O, Peters O, Nitsch R, Heppner FL, Golenbock D, Schott E, Ploegh HL, Wulczyn FG, Lehnardt S. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci. 2012;15:827–35.
21.
go back to reference Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, Walter J. microRNA (miRNA) speciation in Alzheimer’ s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol. 2012;3:365–73.PubMedPubMedCentral Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, Walter J. microRNA (miRNA) speciation in Alzheimer’ s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol. 2012;3:365–73.PubMedPubMedCentral
22.
go back to reference Müller M, Kuiperij HB, Claassen JA, Küsters B, Verbeek MM. MicroRNAs in Alzheimer’s disease: differential expression in hippocampus and cell-free cerebrospinal fluid. Neurobiol Aging. 2014;35:152–8.CrossRefPubMed Müller M, Kuiperij HB, Claassen JA, Küsters B, Verbeek MM. MicroRNAs in Alzheimer’s disease: differential expression in hippocampus and cell-free cerebrospinal fluid. Neurobiol Aging. 2014;35:152–8.CrossRefPubMed
23.
go back to reference Sala Frigerio C, Lau P, Salta E, Tournoy J, Bossers K, Vandenberghe R, Wallin A, Bjerke M, Zetterberg H, Blennow K, De Strooper B. Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease. Neurology. 2013;81:2103–6. Sala Frigerio C, Lau P, Salta E, Tournoy J, Bossers K, Vandenberghe R, Wallin A, Bjerke M, Zetterberg H, Blennow K, De Strooper B. Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease. Neurology. 2013;81:2103–6.
24.
go back to reference Liu C-G, Wang J-L, Li L, Xue L-X, Zhang Y-Q, Wang P-C. MicroRNA-135a and -200b, potential Biomarkers for Alzheimer׳s disease, regulate β secretase and amyloid precursor protein. Brain Res. 2014;1583:55–64.CrossRefPubMed Liu C-G, Wang J-L, Li L, Xue L-X, Zhang Y-Q, Wang P-C. MicroRNA-135a and -200b, potential Biomarkers for Alzheimer׳s disease, regulate β secretase and amyloid precursor protein. Brain Res. 2014;1583:55–64.CrossRefPubMed
25.
go back to reference Kiko T, Nakagawa K, Tsuduki T, Furukawa K, Arai H, Miyazawa T. MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. J Alzheimer’s Dis. 2014;39:253–9. Kiko T, Nakagawa K, Tsuduki T, Furukawa K, Arai H, Miyazawa T. MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. J Alzheimer’s Dis. 2014;39:253–9.
26.
go back to reference Burgos K, Malenica I, Metpally R, Courtright A, Rakela B, Beach T, Shill H, Adler C, Sabbagh M, Villa S, Tembe W, Craig D, Van Keuren-Jensen K. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson's diseases correlate with disease status and features of pathology. PLoS One. 2014;9:e94839. Burgos K, Malenica I, Metpally R, Courtright A, Rakela B, Beach T, Shill H, Adler C, Sabbagh M, Villa S, Tembe W, Craig D, Van Keuren-Jensen K. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson's diseases correlate with disease status and features of pathology. PLoS One. 2014;9:e94839.
27.
go back to reference Galimberti D, Villa C, Fenoglio C, Serpente M, Ghezzi L, Cioffi SMG, Arighi A, Fumagalli G, Scarpini E. Circulating miRNAs as Potential Biomarkers in Alzheimer’s Disease. J Alzheimers Dis. 2014;42:1261–7. Galimberti D, Villa C, Fenoglio C, Serpente M, Ghezzi L, Cioffi SMG, Arighi A, Fumagalli G, Scarpini E. Circulating miRNAs as Potential Biomarkers in Alzheimer’s Disease. J Alzheimers Dis. 2014;42:1261–7.
28.
go back to reference McKhann G, Knopman DS, Chertkow H, Hymann B, Jack CR, Kawas C, Klunk W, Koroshetz W, Manly J, Mayeux R, Mohs R, Morris J, Rossor M, Scheltens P, Carrillo M, Weintrub S, Phelphs C. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging- Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9. McKhann G, Knopman DS, Chertkow H, Hymann B, Jack CR, Kawas C, Klunk W, Koroshetz W, Manly J, Mayeux R, Mohs R, Morris J, Rossor M, Scheltens P, Carrillo M, Weintrub S, Phelphs C. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging- Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.
29.
go back to reference Roman G. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology. 1994;43:250–60.CrossRef Roman G. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology. 1994;43:250–60.CrossRef
30.
go back to reference McKhann GM. Clinical and Pathological Diagnosis of Frontotemporal Dementia. Arch Neurol. 2001;58:1803.CrossRefPubMed McKhann GM. Clinical and Pathological Diagnosis of Frontotemporal Dementia. Arch Neurol. 2001;58:1803.CrossRefPubMed
31.
go back to reference McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, Salmon DP, Lowe J, Mirra SS, Byrne EJ, Lennox G, Quinn NP, Edwardson J a, Ince PG, Bergeron C, Burns a, Miller BL,Lovestone S, Collerton D, Jansen EN, Ballard C, de Vos R a, Wilcock GK, Jellinger K a, Perry RH. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology. 1996;47:1113–24. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, Salmon DP, Lowe J, Mirra SS, Byrne EJ, Lennox G, Quinn NP, Edwardson J a, Ince PG, Bergeron C, Burns a, Miller BL,Lovestone S, Collerton D, Jansen EN, Ballard C, de Vos R a, Wilcock GK, Jellinger K a, Perry RH. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology. 1996;47:1113–24.
32.
go back to reference Andersen CL, Jensen JL, Ørntoft TF. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data : A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets Normalization of Real-Time Quantitative Reverse. Cancer Res. 2004;64:5245–50.CrossRefPubMed Andersen CL, Jensen JL, Ørntoft TF. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data : A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets Normalization of Real-Time Quantitative Reverse. Cancer Res. 2004;64:5245–50.CrossRefPubMed
33.
go back to reference Jolla L. Quantification strategies in real-time PCR Michael W.Pfaffl. 2004. p. 87–112. Jolla L. Quantification strategies in real-time PCR Michael W.Pfaffl. 2004. p. 87–112.
34.
go back to reference Reiber H, Peter JB. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci. 2001;184:101–22.CrossRefPubMed Reiber H, Peter JB. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci. 2001;184:101–22.CrossRefPubMed
35.
go back to reference Sørensen SS, Nygaard A-B, Nielsen M-Y, Jensen K, Christensen T. miRNA Expression Profiles in Cerebrospinal Fluid and Blood of Patients with Acute Ischemic Stroke. Transl Stroke Res. 2014;5:711–8.CrossRefPubMed Sørensen SS, Nygaard A-B, Nielsen M-Y, Jensen K, Christensen T. miRNA Expression Profiles in Cerebrospinal Fluid and Blood of Patients with Acute Ischemic Stroke. Transl Stroke Res. 2014;5:711–8.CrossRefPubMed
36.
go back to reference Hébert SS, Horré K, Nicolaï L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B. MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis. 2009;33:422–8. Hébert SS, Horré K, Nicolaï L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B. MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis. 2009;33:422–8.
37.
go back to reference Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ. Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science. 2010;330(6012):1774. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ. Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science. 2010;330(6012):1774.
38.
go back to reference Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12:697.CrossRefPubMed Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12:697.CrossRefPubMed
39.
go back to reference Calero M, Gomez-Ramos A, Calero O, Soriano E, Avila J, Medina M. Additional mechanisms conferring genetic susceptibility to Alzheimer’s disease. Front Cell Neurosci. 2015;9:1–9.CrossRef Calero M, Gomez-Ramos A, Calero O, Soriano E, Avila J, Medina M. Additional mechanisms conferring genetic susceptibility to Alzheimer’s disease. Front Cell Neurosci. 2015;9:1–9.CrossRef
40.
go back to reference Cochran JN, Rush T, Buckingham SC, Roberson ED. The Alzheimer’s disease risk factor CD2AP maintains blood–brain barrier integrity. Hum Mol Genet. 2015;24:6667–74.CrossRefPubMed Cochran JN, Rush T, Buckingham SC, Roberson ED. The Alzheimer’s disease risk factor CD2AP maintains blood–brain barrier integrity. Hum Mol Genet. 2015;24:6667–74.CrossRefPubMed
41.
go back to reference Chen XM, Splinter PL, O’Hara SP, LaRusso NF. A cellular micro-RNA, let-7i, regulates toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem. 2007;282:28929–38.CrossRefPubMedPubMedCentral Chen XM, Splinter PL, O’Hara SP, LaRusso NF. A cellular micro-RNA, let-7i, regulates toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem. 2007;282:28929–38.CrossRefPubMedPubMedCentral
42.
go back to reference Zong Y, Wang H, Dong W, Quan X, Zhu H, Xu Y, Huang L, Ma C, Qin C. miR-29c regulates BACE1 protein expression. Brain Res. 2011;1395:108–15. Zong Y, Wang H, Dong W, Quan X, Zhu H, Xu Y, Huang L, Ma C, Qin C. miR-29c regulates BACE1 protein expression. Brain Res. 2011;1395:108–15.
43.
go back to reference Lee S-T, Chu K, Jung K-H, Kim JH, Huh J-Y, Yoon H, Park D-K, Lim J-Y, Kim J-M, Jeon D, Ryu H, Lee SK, Kim M, Roh J-K. miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol. 2012;72:269–77. Lee S-T, Chu K, Jung K-H, Kim JH, Huh J-Y, Yoon H, Park D-K, Lim J-Y, Kim J-M, Jeon D, Ryu H, Lee SK, Kim M, Roh J-K. miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol. 2012;72:269–77.
44.
go back to reference Tian N, Cao Z, Zhang Y. MiR-206 decreases brain-derived neurotrophic factor levels in a transgenic mouse model of Alzheimer’s disease. Neurosci Bull. 2014;30:191–7.CrossRefPubMed Tian N, Cao Z, Zhang Y. MiR-206 decreases brain-derived neurotrophic factor levels in a transgenic mouse model of Alzheimer’s disease. Neurosci Bull. 2014;30:191–7.CrossRefPubMed
45.
go back to reference Ren J, Zhang J, Xu N, Han G, Geng Q, Song J, Li S, Zhao J, Chen H. Signature of circulating MicroRNAs As potential biomarkers in vulnerable coronary artery disease. PLoS One. 2013;8(12):e80738. Ren J, Zhang J, Xu N, Han G, Geng Q, Song J, Li S, Zhao J, Chen H. Signature of circulating MicroRNAs As potential biomarkers in vulnerable coronary artery disease. PLoS One. 2013;8(12):e80738.
46.
go back to reference Villa C, Fenoglio C, De Riz M, Clerici F, Marcone A, Benussi L, Ghidoni R, Gallone S, Cortini F, Serpente M, Cantoni C, Fumagalli G, Boneschi FM, Cappa S, Binetti G, Franceschi M, Rainero I, Giordana MT, Mariani C, Bresolin N, Scarpini E, Galimberti D. Role of hnRNP-A1 and miR-590-3p in neuronal death: genetics and expression analysis in patients with Alzheimer disease and frontotemporal lobar degeneration. Rejuvenation Res. 2011;14:275–81. Villa C, Fenoglio C, De Riz M, Clerici F, Marcone A, Benussi L, Ghidoni R, Gallone S, Cortini F, Serpente M, Cantoni C, Fumagalli G, Boneschi FM, Cappa S, Binetti G, Franceschi M, Rainero I, Giordana MT, Mariani C, Bresolin N, Scarpini E, Galimberti D. Role of hnRNP-A1 and miR-590-3p in neuronal death: genetics and expression analysis in patients with Alzheimer disease and frontotemporal lobar degeneration. Rejuvenation Res. 2011;14:275–81.
47.
go back to reference Narasimhan M, Patel D, Vedpathak D, Rathinam M, Henderson G, Mahimainathan L. Identification of Novel microRNAs in Post-Transcriptional Control of Nrf2 Expression and Redox Homeostasis in Neuronal, SH-SY5Y Cells. PLoS One. 2012;7(12):e51111.CrossRefPubMedPubMedCentral Narasimhan M, Patel D, Vedpathak D, Rathinam M, Henderson G, Mahimainathan L. Identification of Novel microRNAs in Post-Transcriptional Control of Nrf2 Expression and Redox Homeostasis in Neuronal, SH-SY5Y Cells. PLoS One. 2012;7(12):e51111.CrossRefPubMedPubMedCentral
48.
go back to reference Kumar P, Dezso Z, MacKenzie C, Oestreicher J, Agoulnik S, Byrne M, Bernier F, Yanagimachi M, Aoshima K, Oda Y. Circulating miRNA biomarkers for Alzheimer’s disease. PLoS One. 2013;8:e69807. Kumar P, Dezso Z, MacKenzie C, Oestreicher J, Agoulnik S, Byrne M, Bernier F, Yanagimachi M, Aoshima K, Oda Y. Circulating miRNA biomarkers for Alzheimer’s disease. PLoS One. 2013;8:e69807.
49.
go back to reference Wang T, Chen K, Li H, Dong S, Su N, Liu Y, Cheng Y, Dai J, Yang C, Xiao S. The Feasibility of Utilizing Plasma MiRNA107 and BACE1 Messenger RNA Gene Expression for Clinical Diagnosis of Amnestic Mild Cognitive Impairment. J Clin Psychiatry. 2015;76(2):135–41. Wang T, Chen K, Li H, Dong S, Su N, Liu Y, Cheng Y, Dai J, Yang C, Xiao S. The Feasibility of Utilizing Plasma MiRNA107 and BACE1 Messenger RNA Gene Expression for Clinical Diagnosis of Amnestic Mild Cognitive Impairment. J Clin Psychiatry. 2015;76(2):135–41.
50.
go back to reference Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, Haas J, Ruprecht K, Paul F, Stähler C, Lang CJ, Meder B, Bartfai T, Meese E, Keller A. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013;14:R78. Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, Haas J, Ruprecht K, Paul F, Stähler C, Lang CJ, Meder B, Bartfai T, Meese E, Keller A. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013;14:R78.
Metadata
Title
miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia – an exploratory study
Authors
Sofie Sølvsten Sørensen
Ann-Britt Nygaard
Thomas Christensen
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Translational Neurodegeneration / Issue 1/2016
Electronic ISSN: 2047-9158
DOI
https://doi.org/10.1186/s40035-016-0053-5

Other articles of this Issue 1/2016

Translational Neurodegeneration 1/2016 Go to the issue