Skip to main content
Top
Published in: European Journal of Medical Research 1/2020

Open Access 01-12-2020 | Research

Screening and evaluation of key genes in contributing to pathogenesis of hepatic fibrosis based on microarray data

Authors: Furong Wu, Lijuan Ning, Ran Zhou, Aizong Shen

Published in: European Journal of Medical Research | Issue 1/2020

Login to get access

Abstract

Background

Hepatic fibrosis (HF), which is characterized by the excessive accumulation of extracellular matrix (ECM) in the liver, usually progresses to liver cirrhosis and then death. To screen differentially expressed (DE) long non-coding RNAs (lncRNAs) and mRNAs, explore their potential functions to elucidate the underlying mechanisms of HF.

Methods

The microarray of GSE80601 was downloaded from the Gene Expression Omnibus database, which is based on the GPL1355 platform. Screening for the differentially expressed LncRNAs and mRNAs was conducted between the control and model groups. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to analyze the biological functions and pathways of the DE mRNAs. Additionally, the protein–protein interaction (PPI) network was delineated. In addition, utilizing the Weighted Gene Co-expression Network Analysis (WGCNA) package and Cytoscape software, we constructed lncRNA-mRNA weighted co-expression networks.

Results

A total of 254 significantly differentially expressed lncRNAs and 472 mRNAs were identified. GO and KEGG analyses revealed that DE mRNAs regulated HF by participating in the GO terms of metabolic process, inflammatory response, response to wounding and oxidation–reduction. DE mRNAs were also significantly enriched in the pathways of ECM-receptor interaction, PI3K-Akt signaling pathway, focal adhesion (FA), retinol metabolism and metabolic pathways. Moreover, 24 lncRNAs associated with 40 differentially expressed genes were observed in the modules of lncRNA-mRNA weighted co-expression network.

Conclusions

This study revealed crucial information on the molecular mechanisms of HF and laid a foundation for subsequent genes validation and functional studies, which could contribute to the development of novel diagnostic markers and provide new therapeutic targets for the clinical treatment of HF.
Literature
1.
go back to reference Li XQ, Ren ZX, Li K, et al. Key anti-fibrosis associated long noncoding RNAs identified in human hepatic stellate cell via transcriptome sequencing analysis. Int J Mol Sci. 2018;19:675.PubMedCentralCrossRef Li XQ, Ren ZX, Li K, et al. Key anti-fibrosis associated long noncoding RNAs identified in human hepatic stellate cell via transcriptome sequencing analysis. Int J Mol Sci. 2018;19:675.PubMedCentralCrossRef
2.
go back to reference Molokanova O, Schonig K, Weng SY, et al. Inducible knockdown of procollagen I protects mice from liver fibrosis and leads to dysregulated matrix genes and attenuated inflammation. Matrix Biol. 2018;66:34–49.PubMedCrossRef Molokanova O, Schonig K, Weng SY, et al. Inducible knockdown of procollagen I protects mice from liver fibrosis and leads to dysregulated matrix genes and attenuated inflammation. Matrix Biol. 2018;66:34–49.PubMedCrossRef
3.
go back to reference Mu M, Zuo S, Wu RM, et al. Ferulic acid attenuates liver fibrosis and hepatic stellate cell activation via inhibition of TGF-beta/Smad signaling pathway. Drug Des Devel Ther. 2018;12:4107–15.PubMedPubMedCentralCrossRef Mu M, Zuo S, Wu RM, et al. Ferulic acid attenuates liver fibrosis and hepatic stellate cell activation via inhibition of TGF-beta/Smad signaling pathway. Drug Des Devel Ther. 2018;12:4107–15.PubMedPubMedCentralCrossRef
4.
go back to reference Zhou L, Liu S, Han M, et al. miR-185 inhibits fibrogenic activation of hepatic stellate cells and prevents liver fibrosis. Mol Ther Nucleic Acids. 2018;10:91–102.PubMedCrossRef Zhou L, Liu S, Han M, et al. miR-185 inhibits fibrogenic activation of hepatic stellate cells and prevents liver fibrosis. Mol Ther Nucleic Acids. 2018;10:91–102.PubMedCrossRef
6.
go back to reference Ge S, Xiong Y, Wu X, et al. Role of growth factor receptor-bound 2 in CCl4-induced hepatic fibrosis. Biomed Pharmacother. 2017;92:942–51.PubMedCrossRef Ge S, Xiong Y, Wu X, et al. Role of growth factor receptor-bound 2 in CCl4-induced hepatic fibrosis. Biomed Pharmacother. 2017;92:942–51.PubMedCrossRef
7.
go back to reference Ye N, Rao S, Du T, et al. Intergenic variants may predispose to major depression disorder through regulation of long non-coding RNA expression. Gene. 2017;601:21–6.PubMedCrossRef Ye N, Rao S, Du T, et al. Intergenic variants may predispose to major depression disorder through regulation of long non-coding RNA expression. Gene. 2017;601:21–6.PubMedCrossRef
9.
go back to reference Andergassen D, Muckenhuber M, Bammer PC, et al. The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes. PLoS Genet. 2019;15:e1008268.PubMedPubMedCentralCrossRef Andergassen D, Muckenhuber M, Bammer PC, et al. The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes. PLoS Genet. 2019;15:e1008268.PubMedPubMedCentralCrossRef
10.
go back to reference Szafranski P, Dharmadhikari AV, Brosens E, et al. Small noncoding differentially methylated copy-number variants, including lncRNA genes, cause a lethal lung developmental disorder. Genome Res. 2013;23:23–33.PubMedPubMedCentralCrossRef Szafranski P, Dharmadhikari AV, Brosens E, et al. Small noncoding differentially methylated copy-number variants, including lncRNA genes, cause a lethal lung developmental disorder. Genome Res. 2013;23:23–33.PubMedPubMedCentralCrossRef
11.
go back to reference Li F, Huang C, Li Q, Wu X. Construction and comprehensive analysis for dysregulated long non-coding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) network in gastric cancer. Med Sci Monit. 2018;24:37–49.PubMedPubMedCentralCrossRef Li F, Huang C, Li Q, Wu X. Construction and comprehensive analysis for dysregulated long non-coding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) network in gastric cancer. Med Sci Monit. 2018;24:37–49.PubMedPubMedCentralCrossRef
12.
go back to reference Li M, Xie Z, Cai Z, et al. lncRNA-mRNA expression profiles and functional networks of mesenchymal stromal cells involved in monocyte regulation. Stem Cell Res Ther. 2019;10:207.PubMedPubMedCentralCrossRef Li M, Xie Z, Cai Z, et al. lncRNA-mRNA expression profiles and functional networks of mesenchymal stromal cells involved in monocyte regulation. Stem Cell Res Ther. 2019;10:207.PubMedPubMedCentralCrossRef
13.
go back to reference Liu XD, Xie DF, Wang YL, Guan H, Huang RX, Zhou PK. Integrated analysis of lncRNA-mRNA co-expression networks in the alpha-particle induced carcinogenesis of human branchial epithelial cells. Int J Radiat Biol. 2019;95:144–55.PubMedCrossRef Liu XD, Xie DF, Wang YL, Guan H, Huang RX, Zhou PK. Integrated analysis of lncRNA-mRNA co-expression networks in the alpha-particle induced carcinogenesis of human branchial epithelial cells. Int J Radiat Biol. 2019;95:144–55.PubMedCrossRef
14.
go back to reference Yang S, Ning Q, Zhang G, Sun H, Wang Z, Li Y. Construction of differential mRNA-lncRNA crosstalk networks based on ceRNA hypothesis uncover key roles of lncRNAs implicated in esophageal squamous cell carcinoma. Oncotarget. 2016;7:85728–40.PubMedPubMedCentralCrossRef Yang S, Ning Q, Zhang G, Sun H, Wang Z, Li Y. Construction of differential mRNA-lncRNA crosstalk networks based on ceRNA hypothesis uncover key roles of lncRNAs implicated in esophageal squamous cell carcinoma. Oncotarget. 2016;7:85728–40.PubMedPubMedCentralCrossRef
15.
16.
go back to reference Gao JR, Qin XJ, Jiang H, Gao YC, Guo MF, Jiang NN. Potential role of lncRNAs in contributing to pathogenesis of chronic glomerulonephritis based on microarray data. Gene. 2018;643:46–54.PubMedCrossRef Gao JR, Qin XJ, Jiang H, Gao YC, Guo MF, Jiang NN. Potential role of lncRNAs in contributing to pathogenesis of chronic glomerulonephritis based on microarray data. Gene. 2018;643:46–54.PubMedCrossRef
17.
go back to reference Liao SG, Lin Y, Kang DD, et al. Missing value imputation in high-dimensional phenomic data: imputable or not, and how? BMC Bioinform. 2014;15:346.CrossRef Liao SG, Lin Y, Kang DD, et al. Missing value imputation in high-dimensional phenomic data: imputable or not, and how? BMC Bioinform. 2014;15:346.CrossRef
18.
go back to reference Heng L, Jia Z, Bai J, et al. Molecular characterization of metastatic osteosarcoma: differentially expressed genes, transcription factors and microRNAs. Mol Med Rep. 2017;15:2829–36.PubMedCrossRef Heng L, Jia Z, Bai J, et al. Molecular characterization of metastatic osteosarcoma: differentially expressed genes, transcription factors and microRNAs. Mol Med Rep. 2017;15:2829–36.PubMedCrossRef
19.
go back to reference Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.CrossRef Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.CrossRef
20.
go back to reference Hsin KY, Ghosh S, Kitano H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS ONE. 2013;8:e83922.PubMedPubMedCentralCrossRef Hsin KY, Ghosh S, Kitano H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS ONE. 2013;8:e83922.PubMedPubMedCentralCrossRef
22.
go back to reference Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology. 2015;61:1066–79.PubMedCrossRef Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology. 2015;61:1066–79.PubMedCrossRef
23.
go back to reference Wang Y, Ma J, Chen L, Xie XL, Jiang H. Inhibition of focal adhesion kinase on hepatic stellate-cell adhesion and migration. Am J Med Sci. 2017;353:41–8.PubMedCrossRef Wang Y, Ma J, Chen L, Xie XL, Jiang H. Inhibition of focal adhesion kinase on hepatic stellate-cell adhesion and migration. Am J Med Sci. 2017;353:41–8.PubMedCrossRef
24.
go back to reference Poordad FF. Presentation and complications associated with cirrhosis of the liver. Curr Med Res Opin. 2015;31:925–37.PubMedCrossRef Poordad FF. Presentation and complications associated with cirrhosis of the liver. Curr Med Res Opin. 2015;31:925–37.PubMedCrossRef
25.
go back to reference Wang P, Xue Y, Han Y, et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science. 2014;344:310–3.CrossRefPubMed Wang P, Xue Y, Han Y, et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science. 2014;344:310–3.CrossRefPubMed
26.
go back to reference Chen X, Chen Z, Yu S, et al. Long noncoding RNA LINC01234 functions as a competing endogenous RNA to regulate CBFB expression by sponging miR-204-5p in gastric cancer. Clin Cancer Res. 2018;24:2002–14.PubMedCrossRef Chen X, Chen Z, Yu S, et al. Long noncoding RNA LINC01234 functions as a competing endogenous RNA to regulate CBFB expression by sponging miR-204-5p in gastric cancer. Clin Cancer Res. 2018;24:2002–14.PubMedCrossRef
27.
go back to reference Krzyzanowski PM, Muro EM, Andrade-Navarro MA. Computational approaches to discovering noncoding RNA. Wiley Interdiscipl Rev. 2012;3:567–79.CrossRef Krzyzanowski PM, Muro EM, Andrade-Navarro MA. Computational approaches to discovering noncoding RNA. Wiley Interdiscipl Rev. 2012;3:567–79.CrossRef
28.
go back to reference Chen N, Geng Q, Zheng J, He S, Huo X, Sun X. Suppression of the TGF-beta/Smad signaling pathway and inhibition of hepatic stellate cell proliferation play a role in the hepatoprotective effects of curcumin against alcohol-induced hepatic fibrosis. Int J Mol Med. 2014;34:1110–6.PubMedCrossRef Chen N, Geng Q, Zheng J, He S, Huo X, Sun X. Suppression of the TGF-beta/Smad signaling pathway and inhibition of hepatic stellate cell proliferation play a role in the hepatoprotective effects of curcumin against alcohol-induced hepatic fibrosis. Int J Mol Med. 2014;34:1110–6.PubMedCrossRef
29.
go back to reference Wang K, Tang Y, Yan F, Zhu J, Li J. Potent inhibition of TGF-beta signaling pathway regulator Abl: potential therapeutics for hepatic fibrosis. J Recept Signal Transduct Res. 2015;35:410–9.PubMedCrossRef Wang K, Tang Y, Yan F, Zhu J, Li J. Potent inhibition of TGF-beta signaling pathway regulator Abl: potential therapeutics for hepatic fibrosis. J Recept Signal Transduct Res. 2015;35:410–9.PubMedCrossRef
30.
go back to reference Xu A, Li Y, Zhao W, et al. PHP14 regulates hepatic stellate cells migration in liver fibrosis via mediating TGF-beta1 signaling to PI3Kgamma/AKT/Rac1 pathway. J Mol Med (Berl). 2018;96:119–33.PubMedCrossRef Xu A, Li Y, Zhao W, et al. PHP14 regulates hepatic stellate cells migration in liver fibrosis via mediating TGF-beta1 signaling to PI3Kgamma/AKT/Rac1 pathway. J Mol Med (Berl). 2018;96:119–33.PubMedCrossRef
31.
go back to reference Zhou L, Dong X, Wang L, et al. Casticin attenuates liver fibrosis and hepatic stellate cell activation by blocking TGF-beta/Smad signaling pathway. Oncotarget. 2017;8:56267–80.PubMedPubMedCentralCrossRef Zhou L, Dong X, Wang L, et al. Casticin attenuates liver fibrosis and hepatic stellate cell activation by blocking TGF-beta/Smad signaling pathway. Oncotarget. 2017;8:56267–80.PubMedPubMedCentralCrossRef
32.
go back to reference Jiang H. Song J-m, Gao P-f, Qin X-j, Xu S-z and Zhang J-f: metabolic characterization of the early stage of hepatic fibrosis in rat using GC-TOF/MS and multivariate data analyses. Biomed Chromatogr. 2017;31:e3899.CrossRef Jiang H. Song J-m, Gao P-f, Qin X-j, Xu S-z and Zhang J-f: metabolic characterization of the early stage of hepatic fibrosis in rat using GC-TOF/MS and multivariate data analyses. Biomed Chromatogr. 2017;31:e3899.CrossRef
33.
go back to reference Jiang H, Qin XJ, Li WP, Ma R, Wang T, Li ZQ. Effects of Shu Gan Jian Pi formula on rats with carbon tetrachloride induced liver fibrosis using serum metabonomics based on gas chromatography time of flight mass spectrometry. Mol Med Rep. 2017;16:3901–9.PubMedPubMedCentralCrossRef Jiang H, Qin XJ, Li WP, Ma R, Wang T, Li ZQ. Effects of Shu Gan Jian Pi formula on rats with carbon tetrachloride induced liver fibrosis using serum metabonomics based on gas chromatography time of flight mass spectrometry. Mol Med Rep. 2017;16:3901–9.PubMedPubMedCentralCrossRef
34.
go back to reference Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S. Weighted gene coexpression network analysis: state of the art. J Biopharm Stat. 2010;20:281–300.PubMedCrossRef Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S. Weighted gene coexpression network analysis: state of the art. J Biopharm Stat. 2010;20:281–300.PubMedCrossRef
35.
go back to reference Chen Y, Ni H, Zhao Y, et al. Potential role of lncRNAs in contributing to pathogenesis of intervertebral disc degeneration based on microarray data. Med Sci Monit. 2015;21:3449–58.PubMedPubMedCentralCrossRef Chen Y, Ni H, Zhao Y, et al. Potential role of lncRNAs in contributing to pathogenesis of intervertebral disc degeneration based on microarray data. Med Sci Monit. 2015;21:3449–58.PubMedPubMedCentralCrossRef
36.
go back to reference Gao JR, Qin XJ, Jiang H, Gao YC, Guo MF, Jiang NN. Potential role of lncRNAs in contributing to pathogenesis of chronic glomerulonephritis based on microarray data. Gene. 2017;643:46–54.PubMedCrossRef Gao JR, Qin XJ, Jiang H, Gao YC, Guo MF, Jiang NN. Potential role of lncRNAs in contributing to pathogenesis of chronic glomerulonephritis based on microarray data. Gene. 2017;643:46–54.PubMedCrossRef
37.
go back to reference Zhang H, Guo L, Zhang Z, et al. Co-expression network analysis identified gene signatures in osteosarcoma as a predictive tool for lung metastasis and survival. J Cancer. 2019;10:3706–16.PubMedPubMedCentralCrossRef Zhang H, Guo L, Zhang Z, et al. Co-expression network analysis identified gene signatures in osteosarcoma as a predictive tool for lung metastasis and survival. J Cancer. 2019;10:3706–16.PubMedPubMedCentralCrossRef
38.
go back to reference Yu F, Lu Z, Chen B, Dong P, Zheng J. Identification of a novel lincRNA-p21-miR-181b-PTEN signaling cascade in liver fibrosis. Mediat Inflamm. 2016;2016:9856538.CrossRef Yu F, Lu Z, Chen B, Dong P, Zheng J. Identification of a novel lincRNA-p21-miR-181b-PTEN signaling cascade in liver fibrosis. Mediat Inflamm. 2016;2016:9856538.CrossRef
39.
go back to reference Leti F, Legendre C, Still CD, et al. Altered expression of MALAT1 lncRNA in nonalcoholic steatohepatitis fibrosis regulates CXCL5 in hepatic stellate cells. Transl Res. 2017;190(25–39):e21. Leti F, Legendre C, Still CD, et al. Altered expression of MALAT1 lncRNA in nonalcoholic steatohepatitis fibrosis regulates CXCL5 in hepatic stellate cells. Transl Res. 2017;190(25–39):e21.
40.
go back to reference Chen MJ, Wang XG, Sun ZX, Liu XC. Diagnostic value of LncRNA-MEG3 as a serum biomarker in patients with hepatitis B complicated with liver fibrosis. Eur Rev Med Pharmacol Sci. 2019;23:4360–7.PubMed Chen MJ, Wang XG, Sun ZX, Liu XC. Diagnostic value of LncRNA-MEG3 as a serum biomarker in patients with hepatitis B complicated with liver fibrosis. Eur Rev Med Pharmacol Sci. 2019;23:4360–7.PubMed
41.
go back to reference Veidal SS, Karsdal MA, Vassiliadis E, et al. MMP mediated degradation of type VI collagen is highly associated with liver fibrosis–identification and validation of a novel biochemical marker assay. PLoS ONE. 2011;6:e24753.PubMedPubMedCentralCrossRef Veidal SS, Karsdal MA, Vassiliadis E, et al. MMP mediated degradation of type VI collagen is highly associated with liver fibrosis–identification and validation of a novel biochemical marker assay. PLoS ONE. 2011;6:e24753.PubMedPubMedCentralCrossRef
42.
go back to reference Takahara T, Sollberg S, Muona P, Uitto J. Type VI collagen gene expression in experimental liver fibrosis: quantitation and spatial distribution of mRNAs, and immunodetection of the protein. Liver. 1995;15:78–86.PubMedCrossRef Takahara T, Sollberg S, Muona P, Uitto J. Type VI collagen gene expression in experimental liver fibrosis: quantitation and spatial distribution of mRNAs, and immunodetection of the protein. Liver. 1995;15:78–86.PubMedCrossRef
43.
go back to reference Ogawa T, Li Y, Lua I, Hartner A, Asahina K. Isolation of a unique hepatic stellate cell population expressing integrin alpha8 from embryonic mouse livers. Dev Dyn. 2018;247(6):867–81.PubMedPubMedCentralCrossRef Ogawa T, Li Y, Lua I, Hartner A, Asahina K. Isolation of a unique hepatic stellate cell population expressing integrin alpha8 from embryonic mouse livers. Dev Dyn. 2018;247(6):867–81.PubMedPubMedCentralCrossRef
Metadata
Title
Screening and evaluation of key genes in contributing to pathogenesis of hepatic fibrosis based on microarray data
Authors
Furong Wu
Lijuan Ning
Ran Zhou
Aizong Shen
Publication date
01-12-2020
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2020
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-020-00443-0

Other articles of this Issue 1/2020

European Journal of Medical Research 1/2020 Go to the issue