Skip to main content
Top
Published in: European Journal of Medical Research 1/2018

Open Access 01-12-2018 | Research

Analysis of the bony geometry of the acromio-clavicular joint

Authors: Moritz Crönlein, Lukas Postl, Marc Beirer, Dominik Pförringer, Jennifer Lang, Frederik Greve, Michael Müller, Peter Biberthaler, Chlodwig Kirchhoff

Published in: European Journal of Medical Research | Issue 1/2018

Login to get access

Abstract

Background

The primary goal of this study was to analyse the anatomic configuration of the acromio-clavicular joint in a healthy population to be able to develop a classification in a second step. On the basis of the primary findings a secondary goal was to find potential clinical indications in refer to AC-joint dislocation and lateral clavicle fractures.

Methods

The upper thoracic aperture including both shoulder joints as well as both sterno-clavicular joints was retrospectively reformatted in a bone kernel in axial orientation with 0.6 mm slice thickness out of existing multiple trauma or post mortem computed tomography (CT) scans. The DICOM data was converted into the STL file format using a three dimensional (3D) reconstruction software (Smartbrush, Brainlab, Feldkirchen, Germany). The data analysis was performed using a 3D—Computer Aided Detection (CAD) Software (BioCAD, Technical University Munich, Germany). For the analysis, the angle between the cranial surface of the acromion and the tangent to its articular surface was evaluated. Accordingly, the angle between the cranial surface of the clavicle and the tangent to its articular surface was assessed.

Results

Overall CT-datasets of 80 healthy patients (40 males, 40 females, mean age 45 ± 8 years) were enrolled and evaluated regarding the configuration of the AC-joint. In this context, three statistically significant (p < 0.001) different configurations of the AC-joint in terms of overhanging acromion, neutral type, overhanging clavicle were identified. The “overhanging acromion” type of AC-joint configuration turned out to be the most common type (46.2%) followed by the “neutral type” (38.4%) and finally the “overhanging clavicle type” (15.4%).

Conclusions

We assume that the shown differences of the AC joint congruency might play an important role in the development of different shoulder injuries resulting from the similar trauma mechanism. However, the proof of these assumptions will be the focus of future studies.
Literature
1.
go back to reference Wellmann M, Smith T. Epidemiology, anatomy, biomechanics and imaging of acromioclavicular joint injuries. Der Unfallchirurg. 2012;115(10):867–71.CrossRef Wellmann M, Smith T. Epidemiology, anatomy, biomechanics and imaging of acromioclavicular joint injuries. Der Unfallchirurg. 2012;115(10):867–71.CrossRef
2.
go back to reference Milz S, Putz R, Haasters F, Ockert B. Anatomy of the acromioclavicular and coracoclavicular region: functional and clinical aspects. Der Unfallchirurg. 2015;118(5):390–6.CrossRef Milz S, Putz R, Haasters F, Ockert B. Anatomy of the acromioclavicular and coracoclavicular region: functional and clinical aspects. Der Unfallchirurg. 2015;118(5):390–6.CrossRef
3.
go back to reference Bosworth BM. Complete acromioclavicular dislocation. N Engl J. 1949;241:221–5.CrossRef Bosworth BM. Complete acromioclavicular dislocation. N Engl J. 1949;241:221–5.CrossRef
4.
go back to reference Bontempo NA, Mazzocca AD. Biomechanics and treatment of acromioclavicular and sternoclavicular joint injuries. Br J Sports Med. 2010;44(5):361–9.CrossRef Bontempo NA, Mazzocca AD. Biomechanics and treatment of acromioclavicular and sternoclavicular joint injuries. Br J Sports Med. 2010;44(5):361–9.CrossRef
5.
go back to reference Wisanuyotin T, Tidchom C, Chaisiwamonkhol K, Chowchuen P, Paholpak P, Sirichativapee W, Kosuwan W, Jeeravipoolvarn P. Geometry of the clavicle and reliability of measurement using PACS. Surg Radiol Anat SRA. 2014;36(6):573–7.CrossRef Wisanuyotin T, Tidchom C, Chaisiwamonkhol K, Chowchuen P, Paholpak P, Sirichativapee W, Kosuwan W, Jeeravipoolvarn P. Geometry of the clavicle and reliability of measurement using PACS. Surg Radiol Anat SRA. 2014;36(6):573–7.CrossRef
6.
go back to reference Ha AS, Petscavage-Thomas JM, Tagoylo GH. Acromioclavicular joint: the other joint in the shoulder. AJR Am J Roentgenol. 2014;202(2):375–85.CrossRef Ha AS, Petscavage-Thomas JM, Tagoylo GH. Acromioclavicular joint: the other joint in the shoulder. AJR Am J Roentgenol. 2014;202(2):375–85.CrossRef
7.
go back to reference Klassen J, Morrey B, Ann K. Surgical anatomy and the function of the acromioclavicular and coracoclavicular ligaments. Oper Tech Sports Med. 1997;5:60–4.CrossRef Klassen J, Morrey B, Ann K. Surgical anatomy and the function of the acromioclavicular and coracoclavicular ligaments. Oper Tech Sports Med. 1997;5:60–4.CrossRef
8.
go back to reference Bernat A, Huysmans T, Van Glabbeek F, Sijbers J, Gielen J, Van Tongel A. The anatomy of the clavicle: a three-dimensional cadaveric study. Clin Anat. 2014;27(5):712–23.CrossRef Bernat A, Huysmans T, Van Glabbeek F, Sijbers J, Gielen J, Van Tongel A. The anatomy of the clavicle: a three-dimensional cadaveric study. Clin Anat. 2014;27(5):712–23.CrossRef
9.
go back to reference Nourissat G, Henon A, Debet-Mejean A, Clement P, Dumontier C, Sautet A, Doursounian L. Three-dimensional computed tomographic scan of the external third of the clavicle. Arthroscopy. 2007;23(1):29–33.CrossRef Nourissat G, Henon A, Debet-Mejean A, Clement P, Dumontier C, Sautet A, Doursounian L. Three-dimensional computed tomographic scan of the external third of the clavicle. Arthroscopy. 2007;23(1):29–33.CrossRef
10.
go back to reference Urist M. Complete dislocations of the acromioclavicular joint. JBJS Am. 1946;28(4):813–37.PubMed Urist M. Complete dislocations of the acromioclavicular joint. JBJS Am. 1946;28(4):813–37.PubMed
11.
go back to reference Maderbacher G, Schaumburger J, Baier C, Zeman F, Springorum HR, Dornia C, Grifka J, Keshmiri A. Predicting knee rotation by the projection overlap of the proximal fibula and tibia in long-leg radiographs. Knee Surg Sports Traumatol Arthrosc. 2014;22(12):2982–8.CrossRef Maderbacher G, Schaumburger J, Baier C, Zeman F, Springorum HR, Dornia C, Grifka J, Keshmiri A. Predicting knee rotation by the projection overlap of the proximal fibula and tibia in long-leg radiographs. Knee Surg Sports Traumatol Arthrosc. 2014;22(12):2982–8.CrossRef
13.
go back to reference Sampath SA, Lewis S, Fosco M, Tigani D. Trabecular orientation in the human femur and tibia and the relationship with lower-limb alignment for patients with osteoarthritis of the knee. J Biomech. 2015;48(6):1214–8.CrossRef Sampath SA, Lewis S, Fosco M, Tigani D. Trabecular orientation in the human femur and tibia and the relationship with lower-limb alignment for patients with osteoarthritis of the knee. J Biomech. 2015;48(6):1214–8.CrossRef
14.
go back to reference Saccomanno MF, De Ieso C, Milano G. Acromioclavicular joint instability: anatomy, biomechanics and evaluation. Joints. 2014;2:87–92.CrossRef Saccomanno MF, De Ieso C, Milano G. Acromioclavicular joint instability: anatomy, biomechanics and evaluation. Joints. 2014;2:87–92.CrossRef
15.
go back to reference Robinson L, Persico F, Lorenz E, Seligson D. Clavicular caution: an anatomic study of neurovascular structures. Injury. 2014;45(12):1867–9.CrossRef Robinson L, Persico F, Lorenz E, Seligson D. Clavicular caution: an anatomic study of neurovascular structures. Injury. 2014;45(12):1867–9.CrossRef
16.
go back to reference Colegate-Stone TJ, Tavakkolizadeh A, Sinha J. An analysis of acromioclavicular joint morphology as a factor for shoulder impingement syndrome. Shoulder Elbow. 2014;6(3):165–70.CrossRef Colegate-Stone TJ, Tavakkolizadeh A, Sinha J. An analysis of acromioclavicular joint morphology as a factor for shoulder impingement syndrome. Shoulder Elbow. 2014;6(3):165–70.CrossRef
17.
go back to reference Colegate-Stone T, Allom R, Singh R, Elias DA, Standring S, Sinha J. Classification of the morphology of the acromioclavicular joint using cadaveric and radiological analysis. J Bone Joint Surg Br. 2010;92(5):743–6.CrossRef Colegate-Stone T, Allom R, Singh R, Elias DA, Standring S, Sinha J. Classification of the morphology of the acromioclavicular joint using cadaveric and radiological analysis. J Bone Joint Surg Br. 2010;92(5):743–6.CrossRef
18.
go back to reference Eschler A, Rosler K, Rotter R, Gradl G, Mittlmeier T, Gierer P. Acromioclavicular joint dislocations: radiological correlation between Rockwood classification system and injury patterns in human cadaver species. Arch Orthop Trauma Surg. 2014;134(9):1193–8.CrossRef Eschler A, Rosler K, Rotter R, Gradl G, Mittlmeier T, Gierer P. Acromioclavicular joint dislocations: radiological correlation between Rockwood classification system and injury patterns in human cadaver species. Arch Orthop Trauma Surg. 2014;134(9):1193–8.CrossRef
19.
go back to reference Fukuda K, Craig EV, An KN, Cofield RH, Chao EY. Biomechanical study of the ligamentous system of the acromioclavicular joint. J Bone Joint Surg Am. 1986;68(3):434–40.CrossRef Fukuda K, Craig EV, An KN, Cofield RH, Chao EY. Biomechanical study of the ligamentous system of the acromioclavicular joint. J Bone Joint Surg Am. 1986;68(3):434–40.CrossRef
20.
go back to reference Tang G, Zhang Y, Liu Y, Qin X, Hu J, Li X. Comparison of surgical and conservative treatment of Rockwood type-III acromioclavicular dislocation: a meta-analysis. Medicine (Baltimore). 2018;97(4):e9690.CrossRef Tang G, Zhang Y, Liu Y, Qin X, Hu J, Li X. Comparison of surgical and conservative treatment of Rockwood type-III acromioclavicular dislocation: a meta-analysis. Medicine (Baltimore). 2018;97(4):e9690.CrossRef
21.
go back to reference Longo UG, Ciuffreda M, Rizzello G, Mannering N, Maffulli N, Denaro V. Surgical versus conservative management of Type III acromioclavicular dislocation: a systematic review. Br Med Bull. 2017;122(1):31–49.CrossRef Longo UG, Ciuffreda M, Rizzello G, Mannering N, Maffulli N, Denaro V. Surgical versus conservative management of Type III acromioclavicular dislocation: a systematic review. Br Med Bull. 2017;122(1):31–49.CrossRef
22.
go back to reference Petri M, Warth RJ, Greenspoon JA, Horan MP, Abrams RF, Kokmeyer D, Millett PJ. Clinical results after conservative management for Grade III acromioclavicular joint injuries: does eventual surgery affect overall outcomes? Arthroscopy. 2016;32(5):740–6.CrossRef Petri M, Warth RJ, Greenspoon JA, Horan MP, Abrams RF, Kokmeyer D, Millett PJ. Clinical results after conservative management for Grade III acromioclavicular joint injuries: does eventual surgery affect overall outcomes? Arthroscopy. 2016;32(5):740–6.CrossRef
23.
go back to reference Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359:1929–36.CrossRef Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359:1929–36.CrossRef
Metadata
Title
Analysis of the bony geometry of the acromio-clavicular joint
Authors
Moritz Crönlein
Lukas Postl
Marc Beirer
Dominik Pförringer
Jennifer Lang
Frederik Greve
Michael Müller
Peter Biberthaler
Chlodwig Kirchhoff
Publication date
01-12-2018
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2018
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-018-0348-3

Other articles of this Issue 1/2018

European Journal of Medical Research 1/2018 Go to the issue