Skip to main content
Top
Published in: European Journal of Medical Research 1/2016

Open Access 01-12-2016 | Review

Stem cell procedures in arthroscopic surgery

Authors: Felix Dyrna, Elmar Herbst, Alexander Hoberman, Andreas B. Imhoff, Andreas Schmitt

Published in: European Journal of Medical Research | Issue 1/2016

Login to get access

Abstract

The stem cell as the building block necessary for tissue reparation and homeostasis plays a major role in regenerative medicine. Their unique property of being pluripotent, able to control immune process and even secrete a whole army of anabolic mediators, draws interest. While new arthroscopic procedures and techniques involving stem cells have been established over the last decade with improved outcomes, failures and dissatisfaction still occur. Therefore, there is increasing interest in ways to improve the healing response. MSCs are particularly promising for this task given their regenerative potential. While methods of isolating those cells are no longer poses a challenge, the best way of application is not clear. Several experiments in the realm of basic science and animal models have recently been published, addressing this issue, yet the application in clinical practice has lagged. This review provides an overview addressing the current standing of MSCs in the field of arthroscopic surgery.
Level of evidence IV.
Literature
2.
go back to reference Kim HM, Caldwell J-ME, Buza JA, Fink LA, Ahmad CS, Bigliani LU, et al. Factors affecting satisfaction and shoulder function in patients with a recurrent rotator cuff tear. J Bone Joint Surg Am. 2014;96:106–12.CrossRefPubMed Kim HM, Caldwell J-ME, Buza JA, Fink LA, Ahmad CS, Bigliani LU, et al. Factors affecting satisfaction and shoulder function in patients with a recurrent rotator cuff tear. J Bone Joint Surg Am. 2014;96:106–12.CrossRefPubMed
3.
go back to reference Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med. 2014;42:1567–73.CrossRefPubMedPubMedCentral Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med. 2014;42:1567–73.CrossRefPubMedPubMedCentral
4.
go back to reference Dines JS, Grande DA, Dines DM. Tissue engineering and rotator cuff tendon healing. J Shoulder Elbow Surg. 2007;16:S204–7.CrossRefPubMed Dines JS, Grande DA, Dines DM. Tissue engineering and rotator cuff tendon healing. J Shoulder Elbow Surg. 2007;16:S204–7.CrossRefPubMed
5.
go back to reference Rodeo SA. Biologic augmentation of rotator cuff tendon repair. J Shoulder Elbow Surg. 2007;16:S191–7.CrossRefPubMed Rodeo SA. Biologic augmentation of rotator cuff tendon repair. J Shoulder Elbow Surg. 2007;16:S191–7.CrossRefPubMed
6.
go back to reference Derwin KA, Codsi MJ, Milks RA, Baker AR, McCarron JA, Iannotti JP. Rotator cuff repair augmentation in a canine model with use of a woven poly-l-lactide device. J Bone Joint Surg Am. 2009;91:1159–71.CrossRefPubMedPubMedCentral Derwin KA, Codsi MJ, Milks RA, Baker AR, McCarron JA, Iannotti JP. Rotator cuff repair augmentation in a canine model with use of a woven poly-l-lactide device. J Bone Joint Surg Am. 2009;91:1159–71.CrossRefPubMedPubMedCentral
7.
go back to reference Gulotta LV, Kovacevic D, Ehteshami JR, Dagher E, Packer JD, Rodeo SA. Application of bone marrow-derived MSCs in a rotator cuff repair model. Am J Sports Med. 2009;37:2126–33.CrossRefPubMed Gulotta LV, Kovacevic D, Ehteshami JR, Dagher E, Packer JD, Rodeo SA. Application of bone marrow-derived MSCs in a rotator cuff repair model. Am J Sports Med. 2009;37:2126–33.CrossRefPubMed
8.
go back to reference Isaac C, Gharaibeh B, Witt M, Wright VJ, Huard J. Biologic approaches to enhance rotator cuff healing after injury. J Shoulder Elbow Surg. 2012;21:181–90.CrossRefPubMed Isaac C, Gharaibeh B, Witt M, Wright VJ, Huard J. Biologic approaches to enhance rotator cuff healing after injury. J Shoulder Elbow Surg. 2012;21:181–90.CrossRefPubMed
9.
go back to reference Nixon AJ, Watts AE, Schnabel LV. Cell- and gene-based approaches to tendon regeneration. J Shoulder Elbow Surg. 2012;21:278–94.CrossRefPubMed Nixon AJ, Watts AE, Schnabel LV. Cell- and gene-based approaches to tendon regeneration. J Shoulder Elbow Surg. 2012;21:278–94.CrossRefPubMed
11.
go back to reference Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.CrossRefPubMed Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.CrossRefPubMed
12.
go back to reference Mabuchi Y, Morikawa S, Harada S, Niibe K, Suzuki S, Renault-Mihara F, et al. LNGFR(+)THY-1(+)VCAM-1(hi+) cells reveal functionally distinct subpopulations in MSCs. Stem Cell Reports. 2013;1:152–65.CrossRefPubMedPubMedCentral Mabuchi Y, Morikawa S, Harada S, Niibe K, Suzuki S, Renault-Mihara F, et al. LNGFR(+)THY-1(+)VCAM-1(hi+) cells reveal functionally distinct subpopulations in MSCs. Stem Cell Reports. 2013;1:152–65.CrossRefPubMedPubMedCentral
13.
go back to reference Busser H, Najar M, Raicevic G, Pieters K, Velez Pombo R, Philippart P, et al. Isolation and characterization of human mesenchymal stromal cell subpopulations: comparison of bone marrow and adipose tissue. Stem Cells Dev. 2015;24:2142–57.CrossRefPubMed Busser H, Najar M, Raicevic G, Pieters K, Velez Pombo R, Philippart P, et al. Isolation and characterization of human mesenchymal stromal cell subpopulations: comparison of bone marrow and adipose tissue. Stem Cells Dev. 2015;24:2142–57.CrossRefPubMed
14.
go back to reference Álvarez-Viejo M, Menéndez-Menéndez Y, Otero-Hernández J. CD271 as a marker to identify MSCs from diverse sources before culture. World J Stem Cells. 2015;7:470–6.CrossRefPubMedPubMedCentral Álvarez-Viejo M, Menéndez-Menéndez Y, Otero-Hernández J. CD271 as a marker to identify MSCs from diverse sources before culture. World J Stem Cells. 2015;7:470–6.CrossRefPubMedPubMedCentral
15.
go back to reference Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.CrossRefPubMed Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.CrossRefPubMed
16.
go back to reference Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.CrossRefPubMed Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.CrossRefPubMed
17.
go back to reference Ehnert S, Glanemann M, Schmitt A, Vogt S, Shanny N, Nussler NC, et al. The possible use of stem cells in regenerative medicine: dream or reality? Langenbecks Arch Surg. 2009;394:985–97.CrossRefPubMed Ehnert S, Glanemann M, Schmitt A, Vogt S, Shanny N, Nussler NC, et al. The possible use of stem cells in regenerative medicine: dream or reality? Langenbecks Arch Surg. 2009;394:985–97.CrossRefPubMed
18.
go back to reference Mummery C, Ward-vanOostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003;107:2733–40.CrossRefPubMed Mummery C, Ward-vanOostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003;107:2733–40.CrossRefPubMed
19.
go back to reference Nir SG, David R, Zaruba M, Franz WM, Itskovitz-Eldor J. Human embryonic stem cells for cardiovascular repair. Cardiovasc Res. 2003;58:313–23.CrossRefPubMed Nir SG, David R, Zaruba M, Franz WM, Itskovitz-Eldor J. Human embryonic stem cells for cardiovascular repair. Cardiovasc Res. 2003;58:313–23.CrossRefPubMed
20.
go back to reference Rubart M, Field LJ. Cardiac repair by embryonic stem-derived cells. Handb Exp Pharmacol. 2006;174:73–100.PubMed Rubart M, Field LJ. Cardiac repair by embryonic stem-derived cells. Handb Exp Pharmacol. 2006;174:73–100.PubMed
21.
go back to reference Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.CrossRefPubMed Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.CrossRefPubMed
22.
23.
go back to reference Mafi R, Hindocha S, Mafi P, Griffin M, Khan WS. Sources of adult MSCs applicable for musculoskeletal applications—a systematic review of the literature. Open Orthop J. 2011;5(Suppl 2):242–8.CrossRefPubMedPubMedCentral Mafi R, Hindocha S, Mafi P, Griffin M, Khan WS. Sources of adult MSCs applicable for musculoskeletal applications—a systematic review of the literature. Open Orthop J. 2011;5(Suppl 2):242–8.CrossRefPubMedPubMedCentral
24.
go back to reference Rasmusson I, Ringdén O, Sundberg B, Le Blanc K. MSCs inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation. 2003;76:1208–13.CrossRefPubMed Rasmusson I, Ringdén O, Sundberg B, Le Blanc K. MSCs inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation. 2003;76:1208–13.CrossRefPubMed
25.
go back to reference Wang L, Li Y, Chen X, Chen J, Gautam SC, Xu Y, et al. MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology. 2002;7:113–7.CrossRefPubMed Wang L, Li Y, Chen X, Chen J, Gautam SC, Xu Y, et al. MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology. 2002;7:113–7.CrossRefPubMed
26.
27.
go back to reference Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y, et al. Targeted migration of MSCs modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther. 2008;16:571–9.CrossRefPubMed Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y, et al. Targeted migration of MSCs modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther. 2008;16:571–9.CrossRefPubMed
29.
go back to reference Granero-Moltó F, Weis JA, Miga MI, Landis B, Myers TJ, O’Rear L, et al. Regenerative effects of transplanted MSCs in fracture healing. Stem Cells. 2009;27:1887–98.CrossRefPubMedPubMedCentral Granero-Moltó F, Weis JA, Miga MI, Landis B, Myers TJ, O’Rear L, et al. Regenerative effects of transplanted MSCs in fracture healing. Stem Cells. 2009;27:1887–98.CrossRefPubMedPubMedCentral
30.
go back to reference Dai W, Hale SL, Kloner RA. Role of a paracrine action of MSCs in the improvement of left ventricular function after coronary artery occlusion in rats. Regen Med. 2007;2:63–8.CrossRefPubMed Dai W, Hale SL, Kloner RA. Role of a paracrine action of MSCs in the improvement of left ventricular function after coronary artery occlusion in rats. Regen Med. 2007;2:63–8.CrossRefPubMed
31.
go back to reference Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified MSCs. Nat Med. 2005;11:367–8.CrossRefPubMed Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified MSCs. Nat Med. 2005;11:367–8.CrossRefPubMed
32.
go back to reference Chen TS, Lai RC, Lee MM, Choo ABH, Lee CN, Lim SK. MSC secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 2010;38:215–24.CrossRefPubMed Chen TS, Lai RC, Lee MM, Choo ABH, Lee CN, Lim SK. MSC secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 2010;38:215–24.CrossRefPubMed
34.
go back to reference Shabbir A, Zisa D, Suzuki G, Lee T. Heart failure therapy mediated by the trophic activities of bone marrow MSCs: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol. 2009;296:H1888–97.CrossRefPubMedPubMedCentral Shabbir A, Zisa D, Suzuki G, Lee T. Heart failure therapy mediated by the trophic activities of bone marrow MSCs: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol. 2009;296:H1888–97.CrossRefPubMedPubMedCentral
35.
go back to reference Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG. Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol. 2007;18:2486–96.CrossRefPubMed Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG. Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol. 2007;18:2486–96.CrossRefPubMed
37.
go back to reference Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–43.CrossRefPubMed Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–43.CrossRefPubMed
38.
go back to reference Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P. Veto-like activity of MSCs: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol. 2003;171:3426–34.CrossRefPubMed Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P. Veto-like activity of MSCs: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol. 2003;171:3426–34.CrossRefPubMed
39.
go back to reference Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110:3499–506.CrossRefPubMed Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110:3499–506.CrossRefPubMed
40.
go back to reference Ellera Gomes JL, da Silva RC, Silla LMR, Abreu MR, Pellanda R. Conventional rotator cuff repair complemented by the aid of mononuclear autologous stem cells. Knee Surg Sports Traumatol Arthrosc. 2012;20:373–7.CrossRefPubMed Ellera Gomes JL, da Silva RC, Silla LMR, Abreu MR, Pellanda R. Conventional rotator cuff repair complemented by the aid of mononuclear autologous stem cells. Knee Surg Sports Traumatol Arthrosc. 2012;20:373–7.CrossRefPubMed
42.
go back to reference Grässel S, Lorenz J. Tissue-engineering strategies to repair chondral and osteochondral tissue in osteoarthritis: use of MSCs. Curr Rheumatol Rep. 2014;16:452.CrossRefPubMedPubMedCentral Grässel S, Lorenz J. Tissue-engineering strategies to repair chondral and osteochondral tissue in osteoarthritis: use of MSCs. Curr Rheumatol Rep. 2014;16:452.CrossRefPubMedPubMedCentral
43.
go back to reference Kuhbier JW, Weyand B, Radtke C, Vogt PM, Kasper C, Reimers K. Isolation, characterization, differentiation, and application of adipose-derived stem cells. Adv Biochem Eng Biotechnol. 2010;123:55–105.PubMed Kuhbier JW, Weyand B, Radtke C, Vogt PM, Kasper C, Reimers K. Isolation, characterization, differentiation, and application of adipose-derived stem cells. Adv Biochem Eng Biotechnol. 2010;123:55–105.PubMed
44.
go back to reference Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006;24:150–4.CrossRefPubMed Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006;24:150–4.CrossRefPubMed
45.
go back to reference Kitagawa Y, Kobori M, Toriyama K, Kamei Y, Torii S. History of discovery of human adipose-derived stem cells and their clinical application. Jpn J Plast Reconstr Surg. 2006;49:1097–104. Kitagawa Y, Kobori M, Toriyama K, Kamei Y, Torii S. History of discovery of human adipose-derived stem cells and their clinical application. Jpn J Plast Reconstr Surg. 2006;49:1097–104.
46.
go back to reference Mazzocca AD, McCarthy MBR, Chowaniec DM, Cote MP, Arciero RA, Drissi H. Rapid isolation of human stem cells (connective tissue progenitor cells) from the proximal humerus during arthroscopic rotator cuff surgery. Am J Sports Med. 2010;38:1438–47.CrossRefPubMed Mazzocca AD, McCarthy MBR, Chowaniec DM, Cote MP, Arciero RA, Drissi H. Rapid isolation of human stem cells (connective tissue progenitor cells) from the proximal humerus during arthroscopic rotator cuff surgery. Am J Sports Med. 2010;38:1438–47.CrossRefPubMed
47.
go back to reference Randelli P, Conforti E, Piccoli M, Ragone V, Creo P, Cirillo F, et al. Isolation and characterization of 2 new human rotator cuff and long head of biceps tendon cells possessing stem cell-like self-renewal and multipotential differentiation capacity. Am J Sports Med. 2013;41:1653–64.CrossRefPubMed Randelli P, Conforti E, Piccoli M, Ragone V, Creo P, Cirillo F, et al. Isolation and characterization of 2 new human rotator cuff and long head of biceps tendon cells possessing stem cell-like self-renewal and multipotential differentiation capacity. Am J Sports Med. 2013;41:1653–64.CrossRefPubMed
48.
go back to reference Song N, Armstrong AD, Li F, Ouyang H, Niyibizi C. Multipotent MSCs from human subacromial bursa: potential for cell based tendon tissue engineering. Tissue Eng Part A. 2014;20:239–49.CrossRefPubMed Song N, Armstrong AD, Li F, Ouyang H, Niyibizi C. Multipotent MSCs from human subacromial bursa: potential for cell based tendon tissue engineering. Tissue Eng Part A. 2014;20:239–49.CrossRefPubMed
49.
go back to reference Steinert AF, Kunz M, Prager P, Göbel S, Klein-Hitpass L, Ebert R, et al. Characterization of bursa subacromialis-derived MSCs. Stem Cell Res Ther. 2015;6:114.CrossRefPubMedPubMedCentral Steinert AF, Kunz M, Prager P, Göbel S, Klein-Hitpass L, Ebert R, et al. Characterization of bursa subacromialis-derived MSCs. Stem Cell Res Ther. 2015;6:114.CrossRefPubMedPubMedCentral
50.
go back to reference Beitzel K, McCarthy MB, Cote MP, Chowaniec D, Falcone LM, Falcone JA, et al. Rapid isolation of human stem cells (connective progenitor cells) from the distal femur during arthroscopic knee surgery. Arthroscopy. 2012;28:74–84.CrossRefPubMed Beitzel K, McCarthy MB, Cote MP, Chowaniec D, Falcone LM, Falcone JA, et al. Rapid isolation of human stem cells (connective progenitor cells) from the distal femur during arthroscopic knee surgery. Arthroscopy. 2012;28:74–84.CrossRefPubMed
51.
go back to reference Nöth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res. 2002;20:1060–9.CrossRefPubMed Nöth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res. 2002;20:1060–9.CrossRefPubMed
52.
go back to reference Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.CrossRefPubMed Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.CrossRefPubMed
53.
go back to reference Tallheden T, Dennis JE, Lennon DP, Sjögren-Jansson E, Caplan AI, Lindahl A. Phenotypic plasticity of human articular chondrocytes. J Bone Joint Surg Am. 2003;85(A Suppl 2):93–100.PubMed Tallheden T, Dennis JE, Lennon DP, Sjögren-Jansson E, Caplan AI, Lindahl A. Phenotypic plasticity of human articular chondrocytes. J Bone Joint Surg Am. 2003;85(A Suppl 2):93–100.PubMed
55.
go back to reference Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13:1219–27.CrossRefPubMed Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13:1219–27.CrossRefPubMed
56.
go back to reference Steinert AF, Kunz M, Prager P, Barthel T, Jakob F, Nöth U, et al. MSC characteristics of human anterior cruciate ligament outgrowth cells. Tissue Eng Part A. 2011;17:1375–88.CrossRefPubMedPubMedCentral Steinert AF, Kunz M, Prager P, Barthel T, Jakob F, Nöth U, et al. MSC characteristics of human anterior cruciate ligament outgrowth cells. Tissue Eng Part A. 2011;17:1375–88.CrossRefPubMedPubMedCentral
57.
go back to reference Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P, et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum. 2004;50:817–27.CrossRefPubMed Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P, et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum. 2004;50:817–27.CrossRefPubMed
58.
go back to reference Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, et al. Biologic properties of MSCs derived from bone marrow and adipose tissue. J Cell Biochem. 2006;99:1285–97.CrossRefPubMedPubMedCentral Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, et al. Biologic properties of MSCs derived from bone marrow and adipose tissue. J Cell Biochem. 2006;99:1285–97.CrossRefPubMedPubMedCentral
59.
go back to reference Vangsness CT, Farr J, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M. Adult human MSCs delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am. 2014;96:90–8.CrossRefPubMed Vangsness CT, Farr J, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M. Adult human MSCs delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am. 2014;96:90–8.CrossRefPubMed
61.
go back to reference Hernigou P, Flouzat Lachaniette CH, Delambre J, Zilber S, Duffiet P, Chevallier N, et al. Biologic augmentation of rotator cuff repair with MSCs during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop. 2014;38:1811–8.CrossRefPubMed Hernigou P, Flouzat Lachaniette CH, Delambre J, Zilber S, Duffiet P, Chevallier N, et al. Biologic augmentation of rotator cuff repair with MSCs during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop. 2014;38:1811–8.CrossRefPubMed
63.
go back to reference Frenkel SR, Di Cesare PE. Scaffolds for articular cartilage repair. Ann Biomed Eng. 2004;32:26–34.CrossRefPubMed Frenkel SR, Di Cesare PE. Scaffolds for articular cartilage repair. Ann Biomed Eng. 2004;32:26–34.CrossRefPubMed
64.
go back to reference Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials. 2007;28:3587–93.CrossRefPubMed Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials. 2007;28:3587–93.CrossRefPubMed
65.
go back to reference Bosetti M, Santin M, Lloyd AW, Denyer SP, Sabbatini M, Cannas M. Cell behaviour on phospholipids-coated surfaces. J Mater Sci Mater Med. 2007;18:611–7.CrossRefPubMed Bosetti M, Santin M, Lloyd AW, Denyer SP, Sabbatini M, Cannas M. Cell behaviour on phospholipids-coated surfaces. J Mater Sci Mater Med. 2007;18:611–7.CrossRefPubMed
66.
go back to reference Zhang H, Lin C-Y, Hollister SJ. The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. Biomaterials. 2009;30:4063–9.CrossRefPubMedPubMedCentral Zhang H, Lin C-Y, Hollister SJ. The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. Biomaterials. 2009;30:4063–9.CrossRefPubMedPubMedCentral
67.
go back to reference Liu X, Won Y, Ma PX. Surface modification of interconnected porous scaffolds. J Biomed Mater Res A. 2005;74:84–91.CrossRefPubMed Liu X, Won Y, Ma PX. Surface modification of interconnected porous scaffolds. J Biomed Mater Res A. 2005;74:84–91.CrossRefPubMed
68.
go back to reference Tachibana A, Nishikawa Y, Nishino M, Kaneko S, Tanabe T, Yamauchi K. Modified keratin sponge: binding of bone morphogenetic protein-2 and osteoblast differentiation. J Biosci Bioeng. 2006;102:425–9.CrossRefPubMed Tachibana A, Nishikawa Y, Nishino M, Kaneko S, Tanabe T, Yamauchi K. Modified keratin sponge: binding of bone morphogenetic protein-2 and osteoblast differentiation. J Biosci Bioeng. 2006;102:425–9.CrossRefPubMed
69.
go back to reference Beitzel K, McCarthy MB, Cote MP, Russell RP, Apostolakos J, Ramos DM, et al. Properties of biologic scaffolds and their response to MSCs. Arthroscopy. 2014;30:289–98.CrossRefPubMed Beitzel K, McCarthy MB, Cote MP, Russell RP, Apostolakos J, Ramos DM, et al. Properties of biologic scaffolds and their response to MSCs. Arthroscopy. 2014;30:289–98.CrossRefPubMed
70.
go back to reference Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26:434–41.CrossRefPubMed Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26:434–41.CrossRefPubMed
71.
go back to reference Chaudhary C, Garg T. Scaffolds: a novel carrier and potential wound healer. Crit Rev Ther Drug Carrier Syst. 2015;32:277–321.CrossRefPubMed Chaudhary C, Garg T. Scaffolds: a novel carrier and potential wound healer. Crit Rev Ther Drug Carrier Syst. 2015;32:277–321.CrossRefPubMed
72.
go back to reference Gomoll AH, Katz JN, Warner JJP, Millett PJ. Rotator cuff disorders: recognition and management among patients with shoulder pain. Arthritis Rheum. 2004;50:3751–61.CrossRefPubMed Gomoll AH, Katz JN, Warner JJP, Millett PJ. Rotator cuff disorders: recognition and management among patients with shoulder pain. Arthritis Rheum. 2004;50:3751–61.CrossRefPubMed
73.
go back to reference Duquin TR, Buyea C, Bisson LJ. Which method of rotator cuff repair leads to the highest rate of structural healing? A systematic review. Am J Sports Med. 2010;38:835–41.CrossRefPubMed Duquin TR, Buyea C, Bisson LJ. Which method of rotator cuff repair leads to the highest rate of structural healing? A systematic review. Am J Sports Med. 2010;38:835–41.CrossRefPubMed
74.
go back to reference Tashjian RZ, Hollins AM, Kim H-M, Teefey SA, Middleton WD, Steger-May K, et al. Factors affecting healing rates after arthroscopic double-row rotator cuff repair. Am J Sports Med. 2010;38:2435–42.CrossRefPubMed Tashjian RZ, Hollins AM, Kim H-M, Teefey SA, Middleton WD, Steger-May K, et al. Factors affecting healing rates after arthroscopic double-row rotator cuff repair. Am J Sports Med. 2010;38:2435–42.CrossRefPubMed
76.
go back to reference Hernigou P, Merouse G, Duffiet P, Chevalier N, Rouard H. Reduced levels of MSCs at the tendon-bone interface tuberosity in patients with symptomatic rotator cuff tear. Int Orthop. 2015;39:1219–25.CrossRefPubMed Hernigou P, Merouse G, Duffiet P, Chevalier N, Rouard H. Reduced levels of MSCs at the tendon-bone interface tuberosity in patients with symptomatic rotator cuff tear. Int Orthop. 2015;39:1219–25.CrossRefPubMed
77.
go back to reference Verdonk PCM, Forsyth RG, Wang J, Almqvist KF, Verdonk R, Veys EM, et al. Characterisation of human knee meniscus cell phenotype. Osteoarthr Cartil. 2005;13:548–60.CrossRefPubMed Verdonk PCM, Forsyth RG, Wang J, Almqvist KF, Verdonk R, Veys EM, et al. Characterisation of human knee meniscus cell phenotype. Osteoarthr Cartil. 2005;13:548–60.CrossRefPubMed
78.
go back to reference Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg. 1982;64:460–6.PubMed Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg. 1982;64:460–6.PubMed
79.
go back to reference Mollon B, Kandel R, Chahal J, Theodoropoulos J. The clinical status of cartilage tissue regeneration in humans. Osteoarthr Cartil. 2013;21:1824–33.CrossRefPubMed Mollon B, Kandel R, Chahal J, Theodoropoulos J. The clinical status of cartilage tissue regeneration in humans. Osteoarthr Cartil. 2013;21:1824–33.CrossRefPubMed
80.
go back to reference Koh Y-G, Kwon O-R, Kim Y-S, Choi Y-J. Comparative outcomes of open-wedge high tibial osteotomy with platelet-rich plasma alone or in combination with MSC treatment: a prospective study. Arthroscopy. 2014;30:1453–60.CrossRefPubMed Koh Y-G, Kwon O-R, Kim Y-S, Choi Y-J. Comparative outcomes of open-wedge high tibial osteotomy with platelet-rich plasma alone or in combination with MSC treatment: a prospective study. Arthroscopy. 2014;30:1453–60.CrossRefPubMed
81.
go back to reference Kim Y-S, Choi Y-J, Suh DS, Heo DB, Kim YI, Ryu J-S, et al. MSC implantation in osteoarthritic knees: is fibrin glue effective as a scaffold? Am J Sports Med. 2015;43:176–85.CrossRefPubMed Kim Y-S, Choi Y-J, Suh DS, Heo DB, Kim YI, Ryu J-S, et al. MSC implantation in osteoarthritic knees: is fibrin glue effective as a scaffold? Am J Sports Med. 2015;43:176–85.CrossRefPubMed
Metadata
Title
Stem cell procedures in arthroscopic surgery
Authors
Felix Dyrna
Elmar Herbst
Alexander Hoberman
Andreas B. Imhoff
Andreas Schmitt
Publication date
01-12-2016
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2016
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-016-0224-y

Other articles of this Issue 1/2016

European Journal of Medical Research 1/2016 Go to the issue