Skip to main content
Top
Published in: Systematic Reviews 1/2021

Open Access 01-12-2021 | Systematic review update

Efficacy of adipose tissue-derived stem cells in locomotion recovery after spinal cord injury: a systematic review and meta-analysis on animal studies

Authors: Seyedeh Niloufar Rafiei Alavi, Arian Madani Neishaboori, Hasti Hossein, Arash Sarveazad, Mahmoud Yousefifard

Published in: Systematic Reviews | Issue 1/2021

Login to get access

Abstract

Background

Considerable disparities exist on the use of adipose tissue-derived stem cells (ADSCs) for treatment of spinal cord injury (SCI). Hence, the current systematic review aimed to investigate the efficacy of ADSCs in locomotion recovery following SCI in animal models.

Methods

A search was conducted in electronic databases of MEDLINE, Embase, Scopus, and Web of Science until the end of July 2019. Reference and citation tracking and searching Google and Google Scholar search engines were performed to achieve more studies. Animal studies conducted on rats having SCI which were treated with ADSCs were included in the study. Exclusion criteria were lacking a non-treated control group, not evaluating locomotion, non-rat studies, not reporting the number of transplanted cells, not reporting isolation and preparation methods of stem cells, review articles, combination therapy, use of genetically modified ADSCs, use of induced pluripotent ADSCs, and human trials. Risk of bias was assessed using Hasannejad et al.’s proposed method for quality control of SCI-animal studies. Data were analyzed in STATA 14.0 software, and based on a random effect model, pooled standardized mean difference with a 95% confidence interval was presented.

Results

Of 588 non-duplicated papers, data from 18 articles were included. Overall risk of bias was high risk in 8 studies, some concern in 9 studies and low risk in 1 study. Current evidence demonstrated that ADSCs transplantation could improve locomotion following SCI (standardized mean difference = 1.71; 95%CI 1.29–2.13; p < 0.0001). A considerable heterogeneity was observed between the studies (I2 = 72.0%; p < 0.0001). Subgroup analysis and meta-regression revealed that most of the factors like injury model, the severity of SCI, treatment phase, injury location, and number of transplanted cells did not have a significant effect on the efficacy of ADSCs in improving locomotion following SCI (pfor odds ratios > 0.05).

Conclusion

We conclude that any number of ADSCs by any prescription routes can improve locomotion recovery in an SCI animal model, at any phase of SCI, with any severity. Given the remarkable bias about blinding, clinical translation of the present results is tough, because in addition to the complexity of the nervous system and the involvement of far more complex motor circuits in the human, blinding compliance and motor outcome assessment tests in animal studies and clinical trials are significantly different.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019;10:282.PubMedPubMedCentralCrossRef Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019;10:282.PubMedPubMedCentralCrossRef
2.
go back to reference Shao A, Tu S, Lu J, Zhang J. Crosstalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Stem Cell Res Ther. 2019;10(1):238.PubMedPubMedCentralCrossRef Shao A, Tu S, Lu J, Zhang J. Crosstalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Stem Cell Res Ther. 2019;10(1):238.PubMedPubMedCentralCrossRef
3.
go back to reference Yousefifard M, Nasirinezhad F, Manaheji HS, Janzadeh A, Hosseini M, Keshavarz M. Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model. Stem Cell Res Ther. 2016;7(1):36.PubMedPubMedCentralCrossRef Yousefifard M, Nasirinezhad F, Manaheji HS, Janzadeh A, Hosseini M, Keshavarz M. Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model. Stem Cell Res Ther. 2016;7(1):36.PubMedPubMedCentralCrossRef
4.
go back to reference Yousefifard M, Maleki SN, Askarian-Amiri S, Vaccaro AR, Chapman JR, Fehlings MG, et al. A combination of mesenchymal stem cells and scaffolds promotes motor functional recovery in spinal cord injury: a systematic review and meta-analysis. J Neurosurg Spine. 2019;1(aop):1–16. Yousefifard M, Maleki SN, Askarian-Amiri S, Vaccaro AR, Chapman JR, Fehlings MG, et al. A combination of mesenchymal stem cells and scaffolds promotes motor functional recovery in spinal cord injury: a systematic review and meta-analysis. J Neurosurg Spine. 2019;1(aop):1–16.
5.
go back to reference Yousefifard M, Nasirinezhad F. Review of cell therapy in spinal cord injury; effect on neuropathic pain. J Med Physiol. 2017;2(2):34–44. Yousefifard M, Nasirinezhad F. Review of cell therapy in spinal cord injury; effect on neuropathic pain. J Med Physiol. 2017;2(2):34–44.
6.
go back to reference Bhartiya D. Pluripotent stem cells in adult tissues: struggling to be acknowledged over two decades. Stem Cell Rev Rep. 2017;13(6):713–24.PubMedCrossRef Bhartiya D. Pluripotent stem cells in adult tissues: struggling to be acknowledged over two decades. Stem Cell Rev Rep. 2017;13(6):713–24.PubMedCrossRef
7.
go back to reference De Girolamo L, Arrigoni E, Stanco D, Lopa S, Di Giancamillo A, Addis A, et al. Role of autologous rabbit adipose-derived stem cells in the early phases of the repairing process of critical bone defects. J Orthop Res. 2011;29(1):100–8.PubMedCrossRef De Girolamo L, Arrigoni E, Stanco D, Lopa S, Di Giancamillo A, Addis A, et al. Role of autologous rabbit adipose-derived stem cells in the early phases of the repairing process of critical bone defects. J Orthop Res. 2011;29(1):100–8.PubMedCrossRef
8.
go back to reference Ebrahimian T, Pouzoulet F, Squiban C, Buard V, André M, Cousin B, et al. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol. 2009;29(4):503–10.PubMedCrossRef Ebrahimian T, Pouzoulet F, Squiban C, Buard V, André M, Cousin B, et al. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol. 2009;29(4):503–10.PubMedCrossRef
9.
go back to reference Estes BT, Diekman BO, Gimble JM, Guilak F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc. 2010;5(7):1294–311.PubMedPubMedCentralCrossRef Estes BT, Diekman BO, Gimble JM, Guilak F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc. 2010;5(7):1294–311.PubMedPubMedCentralCrossRef
10.
go back to reference Gimble JM, Guilak F, Bunnell BA. Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Res Ther. 2010;1(2):19.PubMedPubMedCentralCrossRef Gimble JM, Guilak F, Bunnell BA. Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Res Ther. 2010;1(2):19.PubMedPubMedCentralCrossRef
11.
go back to reference Meyerrose T, Olson S, Pontow S, Kalomoiris S, Jung Y, Annett G, et al. Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv Drug Deliv Rev. 2010;62(12):1167–74.PubMedCrossRef Meyerrose T, Olson S, Pontow S, Kalomoiris S, Jung Y, Annett G, et al. Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv Drug Deliv Rev. 2010;62(12):1167–74.PubMedCrossRef
12.
go back to reference Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev. 2021;10(1):89.PubMedPubMedCentralCrossRef Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev. 2021;10(1):89.PubMedPubMedCentralCrossRef
13.
go back to reference Abdanipour A, Tiraihi T, Taheri T. Intraspinal transplantation of motoneuron-like cell combined with delivery of polymer-based glial cell line-derived neurotrophic factor for repair of spinal cord contusion injury. Neural Regen Res. 2014;9(10):1003–13.PubMedPubMedCentralCrossRef Abdanipour A, Tiraihi T, Taheri T. Intraspinal transplantation of motoneuron-like cell combined with delivery of polymer-based glial cell line-derived neurotrophic factor for repair of spinal cord contusion injury. Neural Regen Res. 2014;9(10):1003–13.PubMedPubMedCentralCrossRef
14.
go back to reference Aras Y, Sabanci PA, Kabatas S, Duruksu G, Subasi C, Erguven M, et al. The effects of adipose tissue-derived mesenchymal stem cell transplantation during the acute and subacute phases following spinal cord injury. Turk Neurosurg. 2016;26(1):127–39.PubMed Aras Y, Sabanci PA, Kabatas S, Duruksu G, Subasi C, Erguven M, et al. The effects of adipose tissue-derived mesenchymal stem cell transplantation during the acute and subacute phases following spinal cord injury. Turk Neurosurg. 2016;26(1):127–39.PubMed
15.
go back to reference Kang SK, Shin MJ, Jung JS, Kim YG, Kim CH. Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells Dev. 2006;15(4):583–94.PubMedCrossRef Kang SK, Shin MJ, Jung JS, Kim YG, Kim CH. Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells Dev. 2006;15(4):583–94.PubMedCrossRef
16.
go back to reference Wang W, Peng H. PEP-1-SOD1 improves the therapeutic potential of transplanted adipose-derived mesenchymal stem cells in spinal cord injury. J Biomater Tissue Eng. 2017;7(12):1313–8.CrossRef Wang W, Peng H. PEP-1-SOD1 improves the therapeutic potential of transplanted adipose-derived mesenchymal stem cells in spinal cord injury. J Biomater Tissue Eng. 2017;7(12):1313–8.CrossRef
17.
go back to reference Sistrom CL, Mergo PJ. A simple method for obtaining original data from published graphs and plots. Am J Roentgenol. 2000;174(5):1241–4.CrossRef Sistrom CL, Mergo PJ. A simple method for obtaining original data from published graphs and plots. Am J Roentgenol. 2000;174(5):1241–4.CrossRef
18.
go back to reference Hassannejad Z, Sharif-Alhoseini M, Shakouri-Motlagh A, Vahedi F, Zadegan SA, Mokhatab M, et al. Potential variables affecting the quality of animal studies regarding pathophysiology of traumatic spinal cord injuries. Spinal Cord. 2016;54(8):579–83.PubMedCrossRef Hassannejad Z, Sharif-Alhoseini M, Shakouri-Motlagh A, Vahedi F, Zadegan SA, Mokhatab M, et al. Potential variables affecting the quality of animal studies regarding pathophysiology of traumatic spinal cord injuries. Spinal Cord. 2016;54(8):579–83.PubMedCrossRef
19.
go back to reference Yousefifard M, Rahimi-Movaghar V, Nasirinezhad F, Baikpour M, Safari S, Saadat S, et al. Neural stem/progenitor cell transplantation for spinal cord injury treatment; A systematic review and meta-analysis. Neuroscience. 2016;322:377–97.PubMedCrossRef Yousefifard M, Rahimi-Movaghar V, Nasirinezhad F, Baikpour M, Safari S, Saadat S, et al. Neural stem/progenitor cell transplantation for spinal cord injury treatment; A systematic review and meta-analysis. Neuroscience. 2016;322:377–97.PubMedCrossRef
20.
go back to reference Hosseini M, Yousefifard M, Aziznejad H, Nasirinezhad F. The effect of bone marrow–derived mesenchymal stem cell transplantation on allodynia and hyperalgesia in neuropathic animals: a systematic review with meta-analysis. Biol Blood Marrow Transplant. 2015;21(9):1537–44.PubMedCrossRef Hosseini M, Yousefifard M, Aziznejad H, Nasirinezhad F. The effect of bone marrow–derived mesenchymal stem cell transplantation on allodynia and hyperalgesia in neuropathic animals: a systematic review with meta-analysis. Biol Blood Marrow Transplant. 2015;21(9):1537–44.PubMedCrossRef
22.
go back to reference da Silva AJ, Villanova JA, Fracaro L, Rebelatto CLK, Barchiki F, de Moura SAB, et al. Effect of mesenchymal stem cells on movement and urination of rats with spinal cord injury. Semin-Cienc Agrar. 2014;35(6):3205–14.CrossRef da Silva AJ, Villanova JA, Fracaro L, Rebelatto CLK, Barchiki F, de Moura SAB, et al. Effect of mesenchymal stem cells on movement and urination of rats with spinal cord injury. Semin-Cienc Agrar. 2014;35(6):3205–14.CrossRef
23.
go back to reference Menezes K, Nascimento MA, Goncalves JP, Cruz AS, Lopes DV, Curzio B, et al. Human mesenchymal cells from adipose tissue deposit laminin and promote regeneration of injured spinal cord in rats. PLoS One. 2014;9(5):e96020.PubMedPubMedCentralCrossRef Menezes K, Nascimento MA, Goncalves JP, Cruz AS, Lopes DV, Curzio B, et al. Human mesenchymal cells from adipose tissue deposit laminin and promote regeneration of injured spinal cord in rats. PLoS One. 2014;9(5):e96020.PubMedPubMedCentralCrossRef
24.
go back to reference Min J, Kim JH, Choi KH, Yoon HH, Jeon SR. Is there additive therapeutic effect when GCSF combined with adipose-derived stem cell in a rat model of acute spinal cord injury? J Korean Neurosurg Soc. 2017;60(4):404–16.PubMedPubMedCentralCrossRef Min J, Kim JH, Choi KH, Yoon HH, Jeon SR. Is there additive therapeutic effect when GCSF combined with adipose-derived stem cell in a rat model of acute spinal cord injury? J Korean Neurosurg Soc. 2017;60(4):404–16.PubMedPubMedCentralCrossRef
25.
go back to reference Oh JS, Park IS, Kim KN, Yoon DH, Kim SH, Ha Y. Transplantation of an adipose stem cell cluster in a spinal cord injury. Neuroreport. 2012;23(5):277–82.PubMedCrossRef Oh JS, Park IS, Kim KN, Yoon DH, Kim SH, Ha Y. Transplantation of an adipose stem cell cluster in a spinal cord injury. Neuroreport. 2012;23(5):277–82.PubMedCrossRef
26.
go back to reference Ohta Y, Hamaguchi A, Ootaki M, Watanabe M, Takeba Y, Iiri T, et al. Intravenous infusion of adipose-derived stem/stromal cells improves functional recovery of rats with spinal cord injury. Cytotherapy. 2017;19(7):839–48.PubMedCrossRef Ohta Y, Hamaguchi A, Ootaki M, Watanabe M, Takeba Y, Iiri T, et al. Intravenous infusion of adipose-derived stem/stromal cells improves functional recovery of rats with spinal cord injury. Cytotherapy. 2017;19(7):839–48.PubMedCrossRef
27.
go back to reference Ohta Y, Takenaga M, Hamaguchi A, Ootaki M, Takeba Y, Kobayashi T, et al. Isolation of adipose-derived stem/stromal cells from cryopreserved fat tissue and transplantation into rats with spinal cord injury. Int J Mol Sci. 2018;19(7):1963.PubMedCentralCrossRef Ohta Y, Takenaga M, Hamaguchi A, Ootaki M, Takeba Y, Kobayashi T, et al. Isolation of adipose-derived stem/stromal cells from cryopreserved fat tissue and transplantation into rats with spinal cord injury. Int J Mol Sci. 2018;19(7):1963.PubMedCentralCrossRef
28.
go back to reference Rosado IR, Carvalho PH, Alves EG, Tagushi TM, Carvalho JL, Silva JF, et al. Immunomodulatory and neuroprotective effect of cryopreserved allogeneic mesenchymal stem cells on spinal cord injury in rats. Genet Mol Res. 2017;16(1). https://doi.org/10.4238/gmr16019555. Rosado IR, Carvalho PH, Alves EG, Tagushi TM, Carvalho JL, Silva JF, et al. Immunomodulatory and neuroprotective effect of cryopreserved allogeneic mesenchymal stem cells on spinal cord injury in rats. Genet Mol Res. 2017;16(1). https://​doi.​org/​10.​4238/​gmr16019555.
29.
go back to reference Sarveazad A, Babahajian A, Bakhtiari M, Soleimani M, Behnam B, Yari A, et al. The combined application of human adipose derived stem cells and Chondroitinase ABC in treatment of a spinal cord injury model. Neuropeptides. 2017;61:39–47.PubMedCrossRef Sarveazad A, Babahajian A, Bakhtiari M, Soleimani M, Behnam B, Yari A, et al. The combined application of human adipose derived stem cells and Chondroitinase ABC in treatment of a spinal cord injury model. Neuropeptides. 2017;61:39–47.PubMedCrossRef
30.
go back to reference Sarveazad A, Bakhtiari M, Babahajian A, Janzade A, Fallah A, Moradi F, et al. Comparison of human adipose-derived stem cells and chondroitinase ABC transplantation on locomotor recovery in the contusion model of spinal cord injury in rats. Iran J Basic Med Sci. 2014;17(9):685–93.PubMedPubMedCentral Sarveazad A, Bakhtiari M, Babahajian A, Janzade A, Fallah A, Moradi F, et al. Comparison of human adipose-derived stem cells and chondroitinase ABC transplantation on locomotor recovery in the contusion model of spinal cord injury in rats. Iran J Basic Med Sci. 2014;17(9):685–93.PubMedPubMedCentral
31.
go back to reference Tang L, Lu X, Zhu R, Qian T, Tao Y, Li K, et al. Adipose-derived stem cells expressing the neurogenin-2 promote functional recovery after spinal cord injury in rat. Cell Mol Neurobiol. 2016;36(5):657–67.PubMedCrossRef Tang L, Lu X, Zhu R, Qian T, Tao Y, Li K, et al. Adipose-derived stem cells expressing the neurogenin-2 promote functional recovery after spinal cord injury in rat. Cell Mol Neurobiol. 2016;36(5):657–67.PubMedCrossRef
32.
go back to reference Zhang H-T, Luo J, Sui L-S, Ma X, Yan Z-J, Lin J-H, et al. Effects of differentiated versus undifferentiated adipose tissue-derived stromal cell grafts on functional recovery after spinal cord contusion. Cell Mol Neurobiol. 2009;29(8):1283.PubMedCrossRef Zhang H-T, Luo J, Sui L-S, Ma X, Yan Z-J, Lin J-H, et al. Effects of differentiated versus undifferentiated adipose tissue-derived stromal cell grafts on functional recovery after spinal cord contusion. Cell Mol Neurobiol. 2009;29(8):1283.PubMedCrossRef
33.
go back to reference Zhang X, Chen Y. Effects of combination of human adipose- derived mesenchymal stem cells transplantation and treadmill training on locomotor functional recovery after incomplete spinal cord injury in rats. Chin J Rehabil Med. 2014;29(6):504–10. Zhang X, Chen Y. Effects of combination of human adipose- derived mesenchymal stem cells transplantation and treadmill training on locomotor functional recovery after incomplete spinal cord injury in rats. Chin J Rehabil Med. 2014;29(6):504–10.
34.
go back to reference Zheng HB, Luo L, Chen L. Tissue-engineered spinal cord construction by chitosan alginate scaffold and adipose-derived mesenchymal stem cells in the treatment of acute spinal cord injury. Chin J Tissue Eng Res. 2017;21(26):4199–204. Zheng HB, Luo L, Chen L. Tissue-engineered spinal cord construction by chitosan alginate scaffold and adipose-derived mesenchymal stem cells in the treatment of acute spinal cord injury. Chin J Tissue Eng Res. 2017;21(26):4199–204.
35.
go back to reference Zhou Z, Chen Y, Zhang H, Min S, Yu B, He B, et al. Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury. Cytotherapy. 2013;15(4):434–48.PubMedCrossRef Zhou Z, Chen Y, Zhang H, Min S, Yu B, He B, et al. Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury. Cytotherapy. 2013;15(4):434–48.PubMedCrossRef
36.
go back to reference Cheriyan T, Ryan DJ, Weinreb JH, Cheriyan J, Paul JC, Lafage V, et al. Spinal cord injury models: a review. Spinal Cord. 2014;52(8):588–95.PubMedCrossRef Cheriyan T, Ryan DJ, Weinreb JH, Cheriyan J, Paul JC, Lafage V, et al. Spinal cord injury models: a review. Spinal Cord. 2014;52(8):588–95.PubMedCrossRef
37.
go back to reference Bertolini F, Lohsiriwat V, Petit JY, Kolonin MG. Adipose tissue cells, lipotransfer and cancer: a challenge for scientists, oncologists and surgeons. Biochim Biophys Acta Rev Cancer. 2012;1826(1):209–14.CrossRef Bertolini F, Lohsiriwat V, Petit JY, Kolonin MG. Adipose tissue cells, lipotransfer and cancer: a challenge for scientists, oncologists and surgeons. Biochim Biophys Acta Rev Cancer. 2012;1826(1):209–14.CrossRef
38.
go back to reference Kalbermatten DF, Schaakxs D, Kingham PJ, Wiberg M. Neurotrophic activity of human adipose stem cells isolated from deep and superficial layers of abdominal fat. Cell Tissue Res. 2011;344(2):251–60.PubMedCrossRef Kalbermatten DF, Schaakxs D, Kingham PJ, Wiberg M. Neurotrophic activity of human adipose stem cells isolated from deep and superficial layers of abdominal fat. Cell Tissue Res. 2011;344(2):251–60.PubMedCrossRef
39.
go back to reference Carelli S, Colli M, Vinci V, Caviggioli F, Klinger M, Gorio A. Mechanical activation of adipose tissue and derived mesenchymal stem cells: novel anti-inflammatory properties. Int J Mol Sci. 2018;19(1):267.PubMedCentralCrossRef Carelli S, Colli M, Vinci V, Caviggioli F, Klinger M, Gorio A. Mechanical activation of adipose tissue and derived mesenchymal stem cells: novel anti-inflammatory properties. Int J Mol Sci. 2018;19(1):267.PubMedCentralCrossRef
40.
go back to reference Masgutov RF, Masgutova GA, Zhuravleva MN, Salafutdinov II, Mukhametshina RT, Mukhamedshina YO, et al. Human adipose-derived stem cells stimulate neuroregeneration. Clin Exp Med. 2016;16(3):451–61.PubMedCrossRef Masgutov RF, Masgutova GA, Zhuravleva MN, Salafutdinov II, Mukhametshina RT, Mukhamedshina YO, et al. Human adipose-derived stem cells stimulate neuroregeneration. Clin Exp Med. 2016;16(3):451–61.PubMedCrossRef
41.
go back to reference Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–8.PubMedCrossRef Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–8.PubMedCrossRef
42.
go back to reference Sarveazad A, Janzadeh A, Taheripak G, Dameni S, Yousefifard M, Nasirinezhad F. Co-administration of human adipose-derived stem cells and low-level laser to alleviate neuropathic pain after experimental spinal cord injury. Stem Cell Res Ther. 2019;10(1):183.PubMedPubMedCentralCrossRef Sarveazad A, Janzadeh A, Taheripak G, Dameni S, Yousefifard M, Nasirinezhad F. Co-administration of human adipose-derived stem cells and low-level laser to alleviate neuropathic pain after experimental spinal cord injury. Stem Cell Res Ther. 2019;10(1):183.PubMedPubMedCentralCrossRef
43.
go back to reference Antonic A, Sena ES, Lees JS, Wills TE, Skeers P, Batchelor PE, et al. Stem cell transplantation in traumatic spinal cord injury: a systematic review and meta-analysis of animal studies. PLoS Biol. 2013;11(12):e1001738.PubMedPubMedCentralCrossRef Antonic A, Sena ES, Lees JS, Wills TE, Skeers P, Batchelor PE, et al. Stem cell transplantation in traumatic spinal cord injury: a systematic review and meta-analysis of animal studies. PLoS Biol. 2013;11(12):e1001738.PubMedPubMedCentralCrossRef
44.
go back to reference Mai CL, Wei X, Gui WS, Xu YN, Zhang J, Lin ZJ, et al. Differential regulation of GSK-3beta in spinal dorsal horn and in hippocampus mediated by interleukin-1beta contributes to pain hypersensitivity and memory deficits following peripheral nerve injury. Mol Pain. 2019;15:1744806919826789.PubMedPubMedCentralCrossRef Mai CL, Wei X, Gui WS, Xu YN, Zhang J, Lin ZJ, et al. Differential regulation of GSK-3beta in spinal dorsal horn and in hippocampus mediated by interleukin-1beta contributes to pain hypersensitivity and memory deficits following peripheral nerve injury. Mol Pain. 2019;15:1744806919826789.PubMedPubMedCentralCrossRef
45.
go back to reference Fan X, Wang JZ, Lin XM, Zhang L. Stem cell transplantation for spinal cord injury: a meta-analysis of treatment effectiveness and safety. Neural Regen Res. 2017;12(5):815.PubMedPubMedCentralCrossRef Fan X, Wang JZ, Lin XM, Zhang L. Stem cell transplantation for spinal cord injury: a meta-analysis of treatment effectiveness and safety. Neural Regen Res. 2017;12(5):815.PubMedPubMedCentralCrossRef
Metadata
Title
Efficacy of adipose tissue-derived stem cells in locomotion recovery after spinal cord injury: a systematic review and meta-analysis on animal studies
Authors
Seyedeh Niloufar Rafiei Alavi
Arian Madani Neishaboori
Hasti Hossein
Arash Sarveazad
Mahmoud Yousefifard
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2021
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-021-01771-w

Other articles of this Issue 1/2021

Systematic Reviews 1/2021 Go to the issue