Skip to main content
Top
Published in: Systematic Reviews 1/2021

Open Access 01-12-2021 | Parkinson's Disease | Protocol

Therapeutic potential of pluripotent stem cell-derived dopaminergic progenitors in Parkinson’s disease: a systematic review protocol

Authors: Aliasghar Karimi, Mitra Elmi, Zahra Shiri, Hossein Baharvand

Published in: Systematic Reviews | Issue 1/2021

Login to get access

Abstract

Background

Parkinson’s disease (PD) is the second most common age-dependent neurodegenerative disease that causes motor and cognitive disabilities. This disease is associated with a loss of dopamine content within the putamen, which stems from the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Several approved drugs are available that can effectively treat symptoms of PD. However, long-term medical management is often complicated and does not delay or halt disease progression. Alternatively, cell replacement strategies can address these shortcomings and provide dopamine where it is needed. Although using human pluripotent stem cells (hPSCs) for treatment of PD is a promising alternative, no consensus in the literature pertains to efficacy concerns of hPSC-based therapy for PD. This systematic review aims to investigate the efficacy of primate PSC-derived DA progenitor transplantation to treat PD in preclinical studies.

Methods

This is a systematic review of preclinical studies in animal models of PD. We intend to use the following databases as article sources: MEDLINE (via PubMed), Web of Science, and SCOPUS without any restrictions on language or publication status for all related articles published until the end of April 2021. Two independent reviewers will select the titles and abstracts, extract data from qualifying studies, and assess the risk of bias using the SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) risk of bias tool and the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) checklist. Apomorphine-induced rotation test (APO-IR) and amphetamine-induced rotation test (AMP-IR) are defined as the primary outcomes. The standardized mean difference (SMD) by Hedges’ g method (r) and odds ratio (OR) and related 95% confidence interval (CI) will be calculated to determine the size effect of the treatment. The heterogeneity between studies will be calculated by “I2 inconsistency of values and Cochran’s Q statistical test,” where I2 > 50% and/or p < 0.10 suggests high heterogeneity. Meta-analyses of random effects will be run when appropriate.

Discussion

This study will present an overview of preclinical research on PSCs and their therapeutic effects in PD animal models. This systematic review will point out the strengths and limitations of studies in the current literature while encouraging the funding of new studies by public health managers and governmental bodies.
Appendix
Available only for authorised users
Literature
5.
go back to reference Tarakad A, Jankovic J. Diagnosis and management of Parkinson’s disease. In Seminars in neurology 2017 Apr (Vol. 37, No. 02, pp. 118-126). Thieme Medical Publishers. Tarakad A, Jankovic J. Diagnosis and management of Parkinson’s disease. In Seminars in neurology 2017 Apr (Vol. 37, No. 02, pp. 118-126). Thieme Medical Publishers.
14.
go back to reference Niethammer M, Tang CC, LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, et al. Long-term follow-up of a randomized AAV2-GAD gene therapy trial for Parkinson’s disease. JCI Insight. 2017;2(7):e90133. Niethammer M, Tang CC, LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, et al. Long-term follow-up of a randomized AAV2-GAD gene therapy trial for Parkinson’s disease. JCI Insight. 2017;2(7):e90133.
20.
go back to reference Doi D, Magotani H, Kikuchi T, Ikeda M, Hiramatsu S, Yoshida K, Amano N, Nomura M, Umekage M, Morizane A, Takahashi J. Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson’s disease. Nat Commun. 2020;11(1):1–4. https://doi.org/10.1038/s41467-020-17165-w. Doi D, Magotani H, Kikuchi T, Ikeda M, Hiramatsu S, Yoshida K, Amano N, Nomura M, Umekage M, Morizane A, Takahashi J. Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson’s disease. Nat Commun. 2020;11(1):1–4. https://​doi.​org/​10.​1038/​s41467-020-17165-w.
24.
go back to reference Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.CrossRef Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.CrossRef
34.
go back to reference Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions. Wiley; 2019.CrossRef Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions. Wiley; 2019.CrossRef
Metadata
Title
Therapeutic potential of pluripotent stem cell-derived dopaminergic progenitors in Parkinson’s disease: a systematic review protocol
Authors
Aliasghar Karimi
Mitra Elmi
Zahra Shiri
Hossein Baharvand
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2021
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-021-01736-z

Other articles of this Issue 1/2021

Systematic Reviews 1/2021 Go to the issue