Skip to main content
Top
Published in: Systematic Reviews 1/2021

Open Access 01-12-2021 | Methodology

Research Screener: a machine learning tool to semi-automate abstract screening for systematic reviews

Authors: Kevin E. K. Chai, Robin L. J. Lines, Daniel F. Gucciardi, Leo Ng

Published in: Systematic Reviews | Issue 1/2021

Login to get access

Abstract

Background

Systematic reviews and meta-analyses provide the highest level of evidence to help inform policy and practice, yet their rigorous nature is associated with significant time and economic demands. The screening of titles and abstracts is the most time consuming part of the review process with analysts required review thousands of articles manually, taking on average 33 days. New technologies aimed at streamlining the screening process have provided initial promising findings, yet there are limitations with current approaches and barriers to the widespread use of these tools. In this paper, we introduce and report initial evidence on the utility of Research Screener, a semi-automated machine learning tool to facilitate abstract screening.

Methods

Three sets of analyses (simulation, interactive and sensitivity) were conducted to provide evidence of the utility of the tool through both simulated and real-world examples.

Results

Research Screener delivered a workload saving of between 60 and 96% across nine systematic reviews and two scoping reviews. Findings from the real-world interactive analysis demonstrated a time saving of 12.53 days compared to the manual screening, which equates to a financial saving of USD 2444. Conservatively, our results suggest that analysts who scan 50% of the total pool of articles identified via a systematic search are highly likely to have identified 100% of eligible papers.

Conclusions

In light of these findings, Research Screener is able to reduce the burden for researchers wishing to conduct a comprehensive systematic review without reducing the scientific rigour for which they strive to achieve.
Appendix
Available only for authorised users
Literature
12.
go back to reference Devlin, J., Chang, M.W., Lee, K., Toutanova, K. BERT: Pre-training Of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies. 2019;1:4171–86. Devlin, J., Chang, M.W., Lee, K., Toutanova, K. BERT: Pre-training Of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies. 2019;1:4171–86.
19.
go back to reference Le Q, Mikolov T. Distributed representations of sentences and documents. In: International Conference on Machine Learning; 2014. p. 1188–96. Le Q, Mikolov T. Distributed representations of sentences and documents. In: International Conference on Machine Learning; 2014. p. 1188–96.
23.
go back to reference Mikolov, T., Sutskever, I., Chen, K., Corrado, G. & Dean, J. Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems. 2013;26:3111–9. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. & Dean, J. Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems. 2013;26:3111–9.
26.
go back to reference Munn Z, Aromataris E, Tufanaru C, Stern C, Porritt K, Farrow J, Lockwood C, Stephenson M, Moola S, Lizarondo L, McArthur A. The development of software to support multiple systematic review types: the Joanna Briggs Institute System for the Unified Management, Assessment and Review of Information (JBI SUMARI). Int J Evid Based Healthcare. 2019;17(1):36–43. https://doi.org/10.1097/XEB.0000000000000152.CrossRef Munn Z, Aromataris E, Tufanaru C, Stern C, Porritt K, Farrow J, Lockwood C, Stephenson M, Moola S, Lizarondo L, McArthur A. The development of software to support multiple systematic review types: the Joanna Briggs Institute System for the Unified Management, Assessment and Review of Information (JBI SUMARI). Int J Evid Based Healthcare. 2019;17(1):36–43. https://​doi.​org/​10.​1097/​XEB.​0000000000000152​.CrossRef
27.
go back to reference O’Connor AM, Tsafnat G, Gilbert SB, Thayer KA, Wolfe MS. Moving toward the automation of the systematic review process: a summary of discussions at the second meeting of International Collaboration for the Automation of Systematic Reviews (ICASR). Syst Rev. 2018;7:3.CrossRef O’Connor AM, Tsafnat G, Gilbert SB, Thayer KA, Wolfe MS. Moving toward the automation of the systematic review process: a summary of discussions at the second meeting of International Collaboration for the Automation of Systematic Reviews (ICASR). Syst Rev. 2018;7:3.CrossRef
29.
go back to reference Olofsson H, Brolund A, Hellberg C, Silverstein R, Stenström K, Österberg M, Dagerhamn J. Can abstract screening workload be reduced using text mining? User experiences of the tool Rayyan. Res Synth Methods. 2017;8(3):275–80. https://doi.org/10.1002/jrsm.1237. Olofsson H, Brolund A, Hellberg C, Silverstein R, Stenström K, Österberg M, Dagerhamn J. Can abstract screening workload be reduced using text mining? User experiences of the tool Rayyan. Res Synth Methods. 2017;8(3):275–80. https://​doi.​org/​10.​1002/​jrsm.​1237.
33.
go back to reference Pennington J, Socher R, Manning CD. Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP); 2014. p. 1532–43.CrossRef Pennington J, Socher R, Manning CD. Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP); 2014. p. 1532–43.CrossRef
41.
go back to reference Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neural Inf Process Syst. 2017;30:5998–6008. Accessed 8 Jul 2020. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neural Inf Process Syst. 2017;30:5998–6008. Accessed 8 Jul 2020.
44.
go back to reference Wallace BC, Small K, Brodley CE, Lau J, Trikalinos TA. Deploying an interactive machine learning system in an evidence-based practice center: abstrackr. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium; 2012b. p. 819–24.CrossRef Wallace BC, Small K, Brodley CE, Lau J, Trikalinos TA. Deploying an interactive machine learning system in an evidence-based practice center: abstrackr. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium; 2012b. p. 819–24.CrossRef
46.
go back to reference Gray C, Crawford G, Maycock B, Lobo R. Socioecological Factors Influencing Sexual Health Experiences and Health Outcomes of Migrant Asian Women Living in ‘Western’ High-Income Countries: A Systematic Review. International Journal of Environmental Research and Public Health. 2021;18(5):2469. https://doi.org/10.3390/ijerph18052469 Gray C, Crawford G, Maycock B, Lobo R. Socioecological Factors Influencing Sexual Health Experiences and Health Outcomes of Migrant Asian Women Living in ‘Western’ High-Income Countries: A Systematic Review. International Journal of Environmental Research and Public Health. 2021;18(5):2469. https://​doi.​org/​10.​3390/​ijerph18052469
47.
go back to reference Robin L. J. Lines, Simon Pietsch, Monique Crane, Nikos Ntoumanis, Philip Temby, Sally Graham, Daniel F. Gucciardi, (2021) The effectiveness of team reflexivity interventions: A systematic review and meta-analysis of randomized controlled trials.. Sport, Exercise, and Performance Psychology Robin L. J. Lines, Simon Pietsch, Monique Crane, Nikos Ntoumanis, Philip Temby, Sally Graham, Daniel F. Gucciardi, (2021) The effectiveness of team reflexivity interventions: A systematic review and meta-analysis of randomized controlled trials.. Sport, Exercise, and Performance Psychology
48.
go back to reference Iain J. Marshall, Byron C. Wallace, (2019) Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. Systematic Reviews 8 (1) Iain J. Marshall, Byron C. Wallace, (2019) Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. Systematic Reviews 8 (1)
49.
go back to reference Rens van de Schoot, Jonathan de Bruin, Raoul Schram, Parisa Zahedi, Jan de Boer, Felix Weijdema, Bianca Kramer, Martijn Huijts, Maarten Hoogerwerf, Gerbrich Ferdinands, Albert Harkema, Joukje Willemsen, Yongchao Ma, Qixiang Fang, Sybren Hindriks, Lars Tummers, Daniel L. Oberski,. An open source machine learning framework for efficient and transparent systematic reviews. Nature Machine Intelligence 3. 2021;(2):125–33 Rens van de Schoot, Jonathan de Bruin, Raoul Schram, Parisa Zahedi, Jan de Boer, Felix Weijdema, Bianca Kramer, Martijn Huijts, Maarten Hoogerwerf, Gerbrich Ferdinands, Albert Harkema, Joukje Willemsen, Yongchao Ma, Qixiang Fang, Sybren Hindriks, Lars Tummers, Daniel L. Oberski,. An open source machine learning framework for efficient and transparent systematic reviews. Nature Machine Intelligence 3. 2021;(2):125–33
Metadata
Title
Research Screener: a machine learning tool to semi-automate abstract screening for systematic reviews
Authors
Kevin E. K. Chai
Robin L. J. Lines
Daniel F. Gucciardi
Leo Ng
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2021
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-021-01635-3

Other articles of this Issue 1/2021

Systematic Reviews 1/2021 Go to the issue