Skip to main content
Top
Published in: Systematic Reviews 1/2019

Open Access 01-12-2019 | Protocol

Protocol for a systematic review, meta-analysis, and trial sequential analysis of clinical outcomes following accelerated versus conventional corneal collagen cross-linking for corneal ectasia

Authors: Siddharth Nath, Carl Shen, Alex Koziarz, Laura Banfield

Published in: Systematic Reviews | Issue 1/2019

Login to get access

Abstract

Background

Collagen cross-linking (CXL) is an evolving procedure that enhances the biomechanical rigidity of the cornea and can slow or halt ectatic disease. CXL requires delivery of 5.4 J/cm2 of ultraviolet A (UVA) radiation to a cornea saturated with riboflavin in order to induce cross-link formation. The conventional CXL procedure achieves this fluence by exposing the cornea to a 3 mW/cm2 UVA lamp for 30 min; however, some surgeons have proposed accelerated protocols which achieve the same fluence in a shorter period of time by using a higher power light source. Whether accelerated protocols are as effective in arresting ectasia as the established conventional procedure remains unclear. Accordingly, this study will systematically review and synthesise the evidence on accelerated CXL and compare it to the conventional approach across an array of clinical outcomes.

Methods

We will search 16 electronic databases, including MEDLINE, Embase, and the Cochrane Library, from inception to February 1, 2019. We will include all randomised controlled trials comparing accelerated and conventional CXL for any corneal ectatic disease. Two reviewers will independently screen search results to identify eligible articles, complete data collection, and conduct quality assessment. The quality of individual trials will be assessed using the Cochrane Collaboration’s Risk of Bias Assessment Tool. Our primary outcome will be the change in maximal keratometry (Kmax) at 12 months following treatment. Additional outcomes will include: incidence of disease progression, incidence of serious adverse events, as well as change in Kmax at longest follow-up, mean stromal demarcation line depth, mean uncorrected distance visual acuity, mean corrected distance visual acuity, mean Kmax, mean endothelial cell density, mean central corneal thickness, mean spherical equivalent, mean intraocular pressure, and mean corneal power, at 12 months following treatment. We will calculate relative risks and 95% confidence intervals (CIs) for dichotomous outcomes and weighted mean differences and corresponding 95% CIs for continuous outcomes. Prespecified subgroup analyses will be performed to investigate heterogeneity. We will rate the overall quality of evidence using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach.

Discussion

This review will provide a comprehensive evaluation of the evidence on accelerated and conventional CXL approaches and serve to inform clinical practice, medical device design, and future research. Evaluating variations of the CXL protocol aimed at reducing treatment duration is of critical importance and a prerequisite to expanding treatment availability to more patients.

Systematic review registration

PROSPERO CRD42018104151
Literature
1.
go back to reference Maharana PK, Dubey A, Jhanji V, Sharma N, Das S, Vajpayee RB. Management of advanced corneal ectasias. Br J Ophthalmol. 2016;100:34–40.CrossRef Maharana PK, Dubey A, Jhanji V, Sharma N, Das S, Vajpayee RB. Management of advanced corneal ectasias. Br J Ophthalmol. 2016;100:34–40.CrossRef
2.
go back to reference Godefrooij DA, de Wit GA, Uiterwaal CS, Imhof SM, Wisse RP. Age-specific incidence and prevalence of keratoconus: a nationwide registration study. Am J Ophthalmol. 2017;175:169–72.CrossRef Godefrooij DA, de Wit GA, Uiterwaal CS, Imhof SM, Wisse RP. Age-specific incidence and prevalence of keratoconus: a nationwide registration study. Am J Ophthalmol. 2017;175:169–72.CrossRef
3.
go back to reference Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a review. Cont Lens Anterior Eye. 2010;33:157–66.CrossRef Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a review. Cont Lens Anterior Eye. 2010;33:157–66.CrossRef
4.
go back to reference Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66:97–103.CrossRef Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66:97–103.CrossRef
5.
go back to reference O’Brart DPS. Corneal collagen cross-linking: a review. J Optom. 2014;7:113–24.CrossRef O’Brart DPS. Corneal collagen cross-linking: a review. J Optom. 2014;7:113–24.CrossRef
6.
go back to reference Spoerl E, Huhle M, Seiler T. Erhöhung der Festigkeit der Hornhaut durch Vernetzung. Ophthalmologe. 1997;94:902–6.CrossRef Spoerl E, Huhle M, Seiler T. Erhöhung der Festigkeit der Hornhaut durch Vernetzung. Ophthalmologe. 1997;94:902–6.CrossRef
8.
go back to reference Spoerl E, Schreiber J, Hellmund K, Seiler T, Knuschke P. Untersuchungen zur Verfestigung der Hornhaut am Kanichen. Ophthalmologe. 2000;97:203–6.CrossRef Spoerl E, Schreiber J, Hellmund K, Seiler T, Knuschke P. Untersuchungen zur Verfestigung der Hornhaut am Kanichen. Ophthalmologe. 2000;97:203–6.CrossRef
9.
go back to reference Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620–7.CrossRef Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620–7.CrossRef
10.
go back to reference Mohammadpour M, Masoumi A, Mirghorbani M, Shahraki K, Hashemi H. Updates on corneal collagen cross-linking: indications, techniques and clinical outcomes. J Curr Ophthalmol. 2017;29:235–47.CrossRef Mohammadpour M, Masoumi A, Mirghorbani M, Shahraki K, Hashemi H. Updates on corneal collagen cross-linking: indications, techniques and clinical outcomes. J Curr Ophthalmol. 2017;29:235–47.CrossRef
11.
go back to reference Bunsen RW, Roscoe BA. Photochemical researches – part V. On the measurement of the chemical action of direct and diffuse sunlight. Proc R Soc Lond. 1862;12:306–12. Bunsen RW, Roscoe BA. Photochemical researches – part V. On the measurement of the chemical action of direct and diffuse sunlight. Proc R Soc Lond. 1862;12:306–12.
12.
go back to reference Woo JH, Iyer JV, Lim L, et al. Conventional versus accelerated collagen cross-linking for keratoconus: a comparison of visual, refractive, topographic and biomechanical outcomes. Open Ophthalmol J. 2017;11:262–72.CrossRef Woo JH, Iyer JV, Lim L, et al. Conventional versus accelerated collagen cross-linking for keratoconus: a comparison of visual, refractive, topographic and biomechanical outcomes. Open Ophthalmol J. 2017;11:262–72.CrossRef
13.
go back to reference Sadoughi MM, Einollahi B, Baradaran-Rafii A, Roshandel D, Hasani H, Nazeri M. Accelerated versus conventional corneal collagen cross-linking in patients with keratoconus: an intrapatient comparative study. Int Ophthalmol. 2018;38:67–74.PubMed Sadoughi MM, Einollahi B, Baradaran-Rafii A, Roshandel D, Hasani H, Nazeri M. Accelerated versus conventional corneal collagen cross-linking in patients with keratoconus: an intrapatient comparative study. Int Ophthalmol. 2018;38:67–74.PubMed
14.
go back to reference Elbaz U, Shen C, Lichtinger A, et al. Accelerated (9-mW/cm2) corneal collagen crosslinking for keratoconus–a 1-year follow-up. Cornea. 2015;33:769–73.CrossRef Elbaz U, Shen C, Lichtinger A, et al. Accelerated (9-mW/cm2) corneal collagen crosslinking for keratoconus–a 1-year follow-up. Cornea. 2015;33:769–73.CrossRef
15.
go back to reference Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.CrossRef Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.CrossRef
16.
go back to reference Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.CrossRef Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.CrossRef
17.
go back to reference Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;229:b2700.CrossRef Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;229:b2700.CrossRef
18.
go back to reference Cochrane handbook for systematic reviews of interventions. 5.1.0 ed. The Cochrane Collaboration, 2011. Cochrane handbook for systematic reviews of interventions. 5.1.0 ed. The Cochrane Collaboration, 2011.
19.
go back to reference Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283:2008–12.CrossRef Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283:2008–12.CrossRef
20.
go back to reference Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRef Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRef
21.
go back to reference DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.CrossRef DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.CrossRef
22.
go back to reference Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.CrossRef Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.CrossRef
23.
go back to reference Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRef Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRef
24.
go back to reference Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.CrossRef Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.CrossRef
25.
go back to reference Brok J, Thorlund K, Gluud C, Wetterslev J. Trial sequential analysis reveals insufficient information size and potentially false positive results in many meta-analyses. J Clin Epidemiol. 2008;61:763–9.CrossRef Brok J, Thorlund K, Gluud C, Wetterslev J. Trial sequential analysis reveals insufficient information size and potentially false positive results in many meta-analyses. J Clin Epidemiol. 2008;61:763–9.CrossRef
26.
go back to reference Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J Clin Epidemiol. 2008;61:64–75.CrossRef Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J Clin Epidemiol. 2008;61:64–75.CrossRef
27.
go back to reference Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6.CrossRef Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6.CrossRef
Metadata
Title
Protocol for a systematic review, meta-analysis, and trial sequential analysis of clinical outcomes following accelerated versus conventional corneal collagen cross-linking for corneal ectasia
Authors
Siddharth Nath
Carl Shen
Alex Koziarz
Laura Banfield
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2019
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-019-1004-x

Other articles of this Issue 1/2019

Systematic Reviews 1/2019 Go to the issue