Skip to main content
Top
Published in: Systematic Reviews 1/2018

Open Access 01-12-2018 | Protocol

Comparison of crystalloid resuscitation fluids for treatment of acute brain injury: a clinical and pre-clinical systematic review and network meta-analysis protocol

Authors: Mary Thompson, Lauralyn McIntyre, Brian Hutton, Alexandre Tran, Dianna Wolfe, Jamie Hutchison, Dean Fergusson, Alexis F. Turgeon, Shane W. English

Published in: Systematic Reviews | Issue 1/2018

Login to get access

Abstract

Background

Current guidelines identify the choice of fluid resuscitation as important in minimizing the incidence of secondary brain injury from cerebral edema. It is widely accepted that isotonic crystalloid resuscitation fluids, specifically normal saline (NS), are optimal for resuscitation and that other relatively hypotonic fluids, such as Ringer’s lactate (RL), should be avoided in this patient population. The aim of this review is to systematically compare the use of relatively hypotonic versus isotonic crystalloid resuscitation fluids in clinical and pre-clinical models of acute brain injury and their effect on outcomes. In recognition of the potential need for a network meta-analysis (NMA), we have also included all other relevant crystalloid resuscitation fluids as interventions of relevance to potentially inform indirect comparisons.

Methods

Systematic searches of MEDLINE, Embase, and Web of Science BIOSIS Previews® will be used to identify eligible clinical and pre-clinical studies, which included studies examining acute brain injury (human and in vivo animal brain injury models) within the first 7 days of therapy. The intervention of interest is the intravenous use of relatively hypotonic crystalloid resuscitation fluids (e.g., Ringer’s lactate, Hartmann’s or Plasma Lyte® fluids). The main comparator of interest is an isotonic crystalloid resuscitation fluid, specifically normal saline (0.9%). Other crystalloid resuscitation fluids (e.g., hypertonic saline (3–23.4%)) will also be included as an additional intervention of interest. The primary outcome measures of interest are intracranial pressure (ICP) and cerebral perfusion pressure (CPP). Secondary outcomes include the effect of resuscitation on cerebral edema, brain and serum osmolarity, and electrolyte concentrations and clinical outcomes including modified Rankin Scale (mRS), (extended) Glasgow Outcome Scale (GOS/eGOS), and mortality. Separate meta-analyses will be conducted to quantify the effects of the different fluid resuscitation on acute brain injury outcomes in clinical and pre-clinical populations. Network meta-analyses to compare interventions will also be performed to compare the effects of different interventions.

Discussion

This systematic review will comprehensively summarize the difference in treatment efficacy of various crystalloid resuscitation fluids in acute brain injury. This review is essential to underscore the evidence, or lack thereof, present in the literature to date to support current preference-driven practice and to direct future study.

Systematic review registration

Appendix
Available only for authorised users
Literature
1.
go back to reference Evans RW. Neurology and trauma. 2nd ed. Oxford: Oxford University Press; 2006. p. 3–16. Evans RW. Neurology and trauma. 2nd ed. Oxford: Oxford University Press; 2006. p. 3–16.
3.
go back to reference Bayr H, Clark RSB, Kochanek PM. Promising strategies to minimize secondary brain injury after head trauma. Crit Care Med. 2003;31(Suppl):S112–7. Bayr H, Clark RSB, Kochanek PM. Promising strategies to minimize secondary brain injury after head trauma. Crit Care Med. 2003;31(Suppl):S112–7.
6.
go back to reference Rochwerg B, Alhazzani W, Sindi A, et al. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Ann Intern Med. 2014;161(5):347–55.CrossRefPubMed Rochwerg B, Alhazzani W, Sindi A, et al. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Ann Intern Med. 2014;161(5):347–55.CrossRefPubMed
7.
go back to reference Chesnut RM, Marshall SB, Piek J, et al. Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the Traumatic Coma Data Bank. Acta Neuro Suppl. 1993;59:121–25. Chesnut RM, Marshall SB, Piek J, et al. Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the Traumatic Coma Data Bank. Acta Neuro Suppl. 1993;59:121–25.
8.
go back to reference Hijdra A, Braakman R, Gijn JV, et al. Aneurysmal subarachnoid hemorrhage. Complications and outcome in a hospital population. Stroke. 1987;18(6):1061–7.CrossRefPubMed Hijdra A, Braakman R, Gijn JV, et al. Aneurysmal subarachnoid hemorrhage. Complications and outcome in a hospital population. Stroke. 1987;18(6):1061–7.CrossRefPubMed
10.
11.
go back to reference Cotton BA, Jerome R, Collier BR, et al. Guidelines for prehospital fluid resuscitation in the injured patient. J Trauma Inj Infect Crit Care. 2009;67(2):389–402.CrossRef Cotton BA, Jerome R, Collier BR, et al. Guidelines for prehospital fluid resuscitation in the injured patient. J Trauma Inj Infect Crit Care. 2009;67(2):389–402.CrossRef
12.
go back to reference Caldwell D, Ades AE, Higgins JP. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ. 2005;331(7521):897. Caldwell D, Ades AE, Higgins JP. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ. 2005;331(7521):897.
13.
go back to reference Catalá-López F, Tobías A, Cameron C, et al. Network meta-analysis for comparing treatment effects of multiple interventions: an introduction. Rheumatol Int. 2014;34(11):1489–96. Catalá-López F, Tobías A, Cameron C, et al. Network meta-analysis for comparing treatment effects of multiple interventions: an introduction. Rheumatol Int. 2014;34(11):1489–96.
14.
go back to reference Helbok R, Olson D, Le Roux P, et al. Intracranial pressure and cerebral perfusion pressure monitoring in non-TBI patients: special considerations. Neuro Crit Care. 2014;S2(21):85–94. Helbok R, Olson D, Le Roux P, et al. Intracranial pressure and cerebral perfusion pressure monitoring in non-TBI patients: special considerations. Neuro Crit Care. 2014;S2(21):85–94.
15.
go back to reference Higgins J, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions [Internet]. Version 5.1.0. London: The Cochrane Collaboration; 2011 [Updated March 2011]. Available from www.cochrane-handbook.org. Higgins J, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions [Internet]. Version 5.1.0. London: The Cochrane Collaboration; 2011 [Updated March 2011]. Available from www.​cochrane-handbook.​org.
16.
go back to reference Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006–12.CrossRefPubMed Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006–12.CrossRefPubMed
18.
20.
go back to reference Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Res Synth Methods. 2012;3(2):80–97.CrossRefPubMed Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Res Synth Methods. 2012;3(2):80–97.CrossRefPubMed
21.
go back to reference Egger M, Smith GD, Schneider M. Systematic reviews of observational studies. In: Egger M, Smith GD, Altman GD, editors. Systematic reviews in health care: meta-analysis in context. 2nd ed. London: BMJ Publishing Group; 2001. p. 211–27. Egger M, Smith GD, Schneider M. Systematic reviews of observational studies. In: Egger M, Smith GD, Altman GD, editors. Systematic reviews in health care: meta-analysis in context. 2nd ed. London: BMJ Publishing Group; 2001. p. 211–27.
22.
go back to reference Cameron C, Fireman B, Hutton B, et al. Network meta-analysis incorporating randomized controlled trials and non-randomized comparative cohort studies for assessing the safety and effectiveness of medical treatments: challenges and opportunities. Syst Rev. 2015;4:147.CrossRefPubMedPubMedCentral Cameron C, Fireman B, Hutton B, et al. Network meta-analysis incorporating randomized controlled trials and non-randomized comparative cohort studies for assessing the safety and effectiveness of medical treatments: challenges and opportunities. Syst Rev. 2015;4:147.CrossRefPubMedPubMedCentral
23.
go back to reference Wan X, Wang W, Lui J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.CrossRefPubMedPubMedCentral Wan X, Wang W, Lui J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.CrossRefPubMedPubMedCentral
24.
go back to reference Grant RL. Converting an odds ratio to a range of plausible relative risks for better communication of research findings. BMJ. 2014;348:f7450.CrossRefPubMed Grant RL. Converting an odds ratio to a range of plausible relative risks for better communication of research findings. BMJ. 2014;348:f7450.CrossRefPubMed
25.
go back to reference Dias S, Welton NJ, Sutton AJ, et al. NICE DSU technical support document 2: a generalised linear modelling framework for pairwise and network meta-analysis of randomised controlled trials. London: National Institute for Health and Care Excellence; 2014. Dias S, Welton NJ, Sutton AJ, et al. NICE DSU technical support document 2: a generalised linear modelling framework for pairwise and network meta-analysis of randomised controlled trials. London: National Institute for Health and Care Excellence; 2014.
26.
go back to reference Dias S, Welton NJ, Sutton AJ, et al. NICE DSU technical support document 4: inconsistency in networks of evidence based on randomised controlled trials. London: National Institute for Health and Care Excellence; 2014. Dias S, Welton NJ, Sutton AJ, et al. NICE DSU technical support document 4: inconsistency in networks of evidence based on randomised controlled trials. London: National Institute for Health and Care Excellence; 2014.
27.
go back to reference Dias S, Welton NJ, Sutton AJ, et al. NICE DSU technical support document 3: heterogeneity: subgroups, meta-regression, bias and bias-adjustment. London: National Institute for Health and Care Excellence; 2014. Dias S, Welton NJ, Sutton AJ, et al. NICE DSU technical support document 3: heterogeneity: subgroups, meta-regression, bias and bias-adjustment. London: National Institute for Health and Care Excellence; 2014.
28.
go back to reference Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–84.CrossRefPubMed Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–84.CrossRefPubMed
29.
go back to reference Zatloukal Z. Conversion between osmolality and osmolarity of infusion solutions. Sci Pharm. 2009;77(4):817–26.CrossRef Zatloukal Z. Conversion between osmolality and osmolarity of infusion solutions. Sci Pharm. 2009;77(4):817–26.CrossRef
Metadata
Title
Comparison of crystalloid resuscitation fluids for treatment of acute brain injury: a clinical and pre-clinical systematic review and network meta-analysis protocol
Authors
Mary Thompson
Lauralyn McIntyre
Brian Hutton
Alexandre Tran
Dianna Wolfe
Jamie Hutchison
Dean Fergusson
Alexis F. Turgeon
Shane W. English
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2018
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-018-0790-x

Other articles of this Issue 1/2018

Systematic Reviews 1/2018 Go to the issue