Skip to main content
Top
Published in: International Journal of Pediatric Endocrinology 1/2018

Open Access 01-12-2018 | Research

Body composition, adipokines, bone mineral density and bone remodeling markers in relation to IGF-1 levels in adults with Prader-Willi syndrome

Authors: I. Caroline van Nieuwpoort, Jos W. R. Twisk, Leopold M. G. Curfs, Paul Lips, Madeleine L. Drent

Published in: International Journal of Pediatric Endocrinology | Issue 1/2018

Login to get access

Abstract

Background

In patients with Prader-Willi syndrome (PWS) body composition is abnormal and alterations in appetite regulating factors, bone mineral density and insulin-like growth factor-1 (IGF-1) levels have been described. Studies in PWS adults are limited. In this study, we investigated body composition, appetite regulating peptides, bone mineral density and markers of bone remodeling in an adult PWS population. Furthermore, we investigated the association between these different parameters and IGF-1 levels because of the described similarities with growth hormone deficient patients.

Methods

In this cross-sectional observational cohort study in a university hospital setting we studied fifteen adult PWS patients. Anthropometric and metabolic parameters, IGF-1 levels, bone mineral density and bone metabolism were evaluated. The homeostasis model assessment of insulin resistance (HOMA2-IR) was calculated. Fourteen healthy siblings served as a control group for part of the measurements.

Results

In the adult PWS patients, height, fat free mass, IGF-1 and bone mineral content were significantly lower when compared to controls; body mass index (BMI), waist, waist-to-hip ratio and fat mass were higher. There was a high prevalence of osteopenia and osteoporosis in the PWS patients. Also, appetite regulating peptides and bone remodelling markers were aberrant when compared to reference values. Measurements of body composition were significantly correlated to appetite regulating peptides and high-sensitive C-reactive protein (hs-CRP), furthermore HOMA was correlated to BMI and adipokines.

Conclusion

In adults with Prader-Willi syndrome alterations in body composition, adipokines, hs-CRP and bone mineral density were demonstrated but these were not associated with IGF-1 levels. Further investigations are warranted to gain more insight into the exact pathophysiology and the role of these alterations in the metabolic and cardiovascular complications seen in PWS, so these complications can be prevented or treated as early as possible.
Literature
2.
go back to reference Holm VA, et al. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics. 1993;91(2):398–402.PubMed Holm VA, et al. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics. 1993;91(2):398–402.PubMed
3.
go back to reference Prader A, Labhart A, Willi H. Ein Syndrom von Adipositas, Kleinwuchs, Kryptorchismus und Oligophrenie nach myatonieartigem Zustand im Neugeborenenalter. Schweiz Med Wochenschr. 1956;86:1260–1. Prader A, Labhart A, Willi H. Ein Syndrom von Adipositas, Kleinwuchs, Kryptorchismus und Oligophrenie nach myatonieartigem Zustand im Neugeborenenalter. Schweiz Med Wochenschr. 1956;86:1260–1.
4.
5.
go back to reference Khan MJ, et al. Mechanisms of obesity in Prader-Willi syndrome. Pediatr Obes. 2018;13(1):3–13. Khan MJ, et al. Mechanisms of obesity in Prader-Willi syndrome. Pediatr Obes. 2018;13(1):3–13.
6.
go back to reference Brambilla P, et al. Peculiar body composition in patients with Prader-Labhart-Willi syndrome. Am J Clin Nutr. 1997;65(5):1369–74.CrossRefPubMed Brambilla P, et al. Peculiar body composition in patients with Prader-Labhart-Willi syndrome. Am J Clin Nutr. 1997;65(5):1369–74.CrossRefPubMed
7.
go back to reference Butler MG, et al. Energy expenditure and physical activity in Prader-Willi syndrome: comparison with obese subjects. Am J Med Genet A. 2007;143(5):449–59.CrossRef Butler MG, et al. Energy expenditure and physical activity in Prader-Willi syndrome: comparison with obese subjects. Am J Med Genet A. 2007;143(5):449–59.CrossRef
8.
go back to reference Davies PS. Body composition in Prader-Willi syndrome: assessment and effects of growth hormone administration. Acta Paediatr Suppl. 1999;88(433):105–8.CrossRefPubMed Davies PS. Body composition in Prader-Willi syndrome: assessment and effects of growth hormone administration. Acta Paediatr Suppl. 1999;88(433):105–8.CrossRefPubMed
9.
go back to reference Goldstone AP, et al. Visceral adipose tissue and metabolic complications of obesity are reduced in Prader-Willi syndrome female adults: evidence for novel influences on body fat distribution. J Clin Endocrinol Metab. 2001;86(9):4330–8.CrossRefPubMed Goldstone AP, et al. Visceral adipose tissue and metabolic complications of obesity are reduced in Prader-Willi syndrome female adults: evidence for novel influences on body fat distribution. J Clin Endocrinol Metab. 2001;86(9):4330–8.CrossRefPubMed
10.
go back to reference Hoybye C, et al. Metabolic profile and body composition in adults with Prader-Willi syndrome and severe obesity. J Clin Endocrinol Metab. 2002;87(8):3590–7.CrossRefPubMed Hoybye C, et al. Metabolic profile and body composition in adults with Prader-Willi syndrome and severe obesity. J Clin Endocrinol Metab. 2002;87(8):3590–7.CrossRefPubMed
11.
go back to reference Kennedy L, et al. Circulating adiponectin levels, body composition and obesity-related variables in Prader-Willi syndrome: comparison with obese subjects. Int J Obes. 2006;30(2):382–7.CrossRef Kennedy L, et al. Circulating adiponectin levels, body composition and obesity-related variables in Prader-Willi syndrome: comparison with obese subjects. Int J Obes. 2006;30(2):382–7.CrossRef
12.
go back to reference Sode-Carlsen R, et al. Body composition, endocrine and metabolic profiles in adults with Prader-Willi syndrome. Growth Hormon IGF Res. 2010;20(3):179–84.CrossRef Sode-Carlsen R, et al. Body composition, endocrine and metabolic profiles in adults with Prader-Willi syndrome. Growth Hormon IGF Res. 2010;20(3):179–84.CrossRef
13.
go back to reference Sobrino CC, et al. Peptides and food intake. Front Endocrinol (Lausanne). 2014;5:58. Sobrino CC, et al. Peptides and food intake. Front Endocrinol (Lausanne). 2014;5:58.
14.
go back to reference Cummings DE, et al. Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med. 2002;8(7):643–4.CrossRefPubMed Cummings DE, et al. Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med. 2002;8(7):643–4.CrossRefPubMed
15.
go back to reference Feigerlova E, et al. Hyperghrelinemia precedes obesity in Prader-Willi syndrome. J Clin Endocrinol Metab. 2008;93(7):2800–5.CrossRefPubMed Feigerlova E, et al. Hyperghrelinemia precedes obesity in Prader-Willi syndrome. J Clin Endocrinol Metab. 2008;93(7):2800–5.CrossRefPubMed
16.
go back to reference Goldstone AP, et al. Elevated fasting plasma ghrelin in prader-willi syndrome adults is not solely explained by their reduced visceral adiposity and insulin resistance. J Clin Endocrinol Metab. 2004;89(4):1718–26.CrossRefPubMed Goldstone AP, et al. Elevated fasting plasma ghrelin in prader-willi syndrome adults is not solely explained by their reduced visceral adiposity and insulin resistance. J Clin Endocrinol Metab. 2004;89(4):1718–26.CrossRefPubMed
17.
go back to reference Haqq AM, et al. Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader-Willi syndrome. J Clin Endocrinol Metab. 2003;88(1):174–8.CrossRefPubMed Haqq AM, et al. Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader-Willi syndrome. J Clin Endocrinol Metab. 2003;88(1):174–8.CrossRefPubMed
18.
go back to reference Paik KH, et al. Correlation between fasting plasma ghrelin levels and age, body mass index (BMI), BMI percentiles, and 24-hour plasma ghrelin profiles in Prader-Willi syndrome. J Clin Endocrinol Metab. 2004;89(8):3885–9.CrossRefPubMed Paik KH, et al. Correlation between fasting plasma ghrelin levels and age, body mass index (BMI), BMI percentiles, and 24-hour plasma ghrelin profiles in Prader-Willi syndrome. J Clin Endocrinol Metab. 2004;89(8):3885–9.CrossRefPubMed
19.
go back to reference DelParigi A, et al. High circulating ghrelin: a potential cause for hyperphagia and obesity in prader-willi syndrome. J Clin Endocrinol Metab. 2002;87(12):5461–4.CrossRefPubMed DelParigi A, et al. High circulating ghrelin: a potential cause for hyperphagia and obesity in prader-willi syndrome. J Clin Endocrinol Metab. 2002;87(12):5461–4.CrossRefPubMed
20.
go back to reference Kweh FA, et al. Hyperghrelinemia in Prader-Willi syndrome begins in early infancy long before the onset of hyperphagia. Am J Med Genet A. 2015;167A(1):69–79.CrossRefPubMed Kweh FA, et al. Hyperghrelinemia in Prader-Willi syndrome begins in early infancy long before the onset of hyperphagia. Am J Med Genet A. 2015;167A(1):69–79.CrossRefPubMed
21.
go back to reference Piya MK, McTernan PG, Kumar S. Adipokine inflammation and insulin resistance: the role of glucose, lipids and endotoxin. J Endocrinol. 2013;216(1):T1–T15.CrossRefPubMed Piya MK, McTernan PG, Kumar S. Adipokine inflammation and insulin resistance: the role of glucose, lipids and endotoxin. J Endocrinol. 2013;216(1):T1–T15.CrossRefPubMed
22.
go back to reference Goldstone AP, et al. Resting metabolic rate, plasma leptin concentrations, leptin receptor expression, and adipose tissue measured by whole-body magnetic resonance imaging in women with Prader-Willi syndrome. Am J Clin Nutr. 2002;75(3):468–75.PubMed Goldstone AP, et al. Resting metabolic rate, plasma leptin concentrations, leptin receptor expression, and adipose tissue measured by whole-body magnetic resonance imaging in women with Prader-Willi syndrome. Am J Clin Nutr. 2002;75(3):468–75.PubMed
23.
go back to reference Hoybye C. Endocrine and metabolic aspects of adult Prader-Willi syndrome with special emphasis on the effect of growth hormone treatment. Growth Hormon IGF Res. 2004;14(1):1–15.CrossRef Hoybye C. Endocrine and metabolic aspects of adult Prader-Willi syndrome with special emphasis on the effect of growth hormone treatment. Growth Hormon IGF Res. 2004;14(1):1–15.CrossRef
24.
go back to reference Proto C, et al. Free and total leptin serum levels and soluble leptin receptors levels in two models of genetic obesity: the Prader-Willi and the down syndromes. Metabolism. 2007;56(8):1076–80.CrossRefPubMed Proto C, et al. Free and total leptin serum levels and soluble leptin receptors levels in two models of genetic obesity: the Prader-Willi and the down syndromes. Metabolism. 2007;56(8):1076–80.CrossRefPubMed
25.
go back to reference Eiholzer U, Blum WF, Molinari L. Body fat determined by skinfold measurements is elevated despite underweight in infants with Prader-Labhart-Willi syndrome. J Pediatr. 1999;134(2):222–5.CrossRefPubMed Eiholzer U, Blum WF, Molinari L. Body fat determined by skinfold measurements is elevated despite underweight in infants with Prader-Labhart-Willi syndrome. J Pediatr. 1999;134(2):222–5.CrossRefPubMed
26.
go back to reference Pagano C, et al. Increased serum resistin in adults with prader-willi syndrome is related to obesity and not to insulin resistance. J Clin Endocrinol Metab. 2005;90(7):4335–40.CrossRefPubMed Pagano C, et al. Increased serum resistin in adults with prader-willi syndrome is related to obesity and not to insulin resistance. J Clin Endocrinol Metab. 2005;90(7):4335–40.CrossRefPubMed
27.
go back to reference Butler MG, et al. Comparison of leptin protein levels in Prader-Willi syndrome and control individuals. Am J Med Genet. 1998;75(1):7–12.CrossRefPubMed Butler MG, et al. Comparison of leptin protein levels in Prader-Willi syndrome and control individuals. Am J Med Genet. 1998;75(1):7–12.CrossRefPubMed
28.
go back to reference Caixas A, et al. Postprandial adiponectin levels are unlikely to contribute to the pathogenesis of obesity in Prader-Willi syndrome. Horm Res. 2006;65(1):39–45.PubMed Caixas A, et al. Postprandial adiponectin levels are unlikely to contribute to the pathogenesis of obesity in Prader-Willi syndrome. Horm Res. 2006;65(1):39–45.PubMed
29.
go back to reference Hoybye C, et al. Serum adiponectin levels in adults with Prader-Willi syndrome are independent of anthropometrical parameters and do not change with GH treatment. Eur J Endocrinol. 2004;151(4):457–61.CrossRefPubMed Hoybye C, et al. Serum adiponectin levels in adults with Prader-Willi syndrome are independent of anthropometrical parameters and do not change with GH treatment. Eur J Endocrinol. 2004;151(4):457–61.CrossRefPubMed
30.
go back to reference Mogul HR, et al. Growth hormone treatment of adults with Prader-Willi syndrome and growth hormone deficiency improves lean body mass, fractional body fat, and serum triiodothyronine without glucose impairment: results from the United States multicenter trial. J Clin Endocrinol Metab. 2008;93(4):1238–45.CrossRefPubMed Mogul HR, et al. Growth hormone treatment of adults with Prader-Willi syndrome and growth hormone deficiency improves lean body mass, fractional body fat, and serum triiodothyronine without glucose impairment: results from the United States multicenter trial. J Clin Endocrinol Metab. 2008;93(4):1238–45.CrossRefPubMed
31.
go back to reference Talebizadeh Z, Butler MG. Insulin resistance and obesity-related factors in Prader-Willi syndrome: comparison with obese subjects. Clin Genet. 2005;67(3):230–9.CrossRefPubMed Talebizadeh Z, Butler MG. Insulin resistance and obesity-related factors in Prader-Willi syndrome: comparison with obese subjects. Clin Genet. 2005;67(3):230–9.CrossRefPubMed
32.
go back to reference Zipf WB. Glucose homeostasis in Prader-Willi syndrome and potential implications of growth hormone therapy. Acta Paediatr Suppl. 1999;88(433):115–7.CrossRefPubMed Zipf WB. Glucose homeostasis in Prader-Willi syndrome and potential implications of growth hormone therapy. Acta Paediatr Suppl. 1999;88(433):115–7.CrossRefPubMed
33.
go back to reference Cadoudal T, et al. Impairment of adipose tissue in Prader-Willi syndrome rescued by growth hormone treatment. Int J Obes (Lond). 2014;38(9):1234–40. Cadoudal T, et al. Impairment of adipose tissue in Prader-Willi syndrome rescued by growth hormone treatment. Int J Obes (Lond). 2014;38(9):1234–40.
35.
go back to reference Caixas A, et al. Adult subjects with Prader-Willi syndrome show more low-grade systemic inflammation than matched obese subjects. J Endocrinol Investig. 2008;31(2):169–75.CrossRef Caixas A, et al. Adult subjects with Prader-Willi syndrome show more low-grade systemic inflammation than matched obese subjects. J Endocrinol Investig. 2008;31(2):169–75.CrossRef
36.
go back to reference Hoybye C. Inflammatory markers in adults with Prader-Willi syndrome before and during 12 months growth hormone treatment. Horm Res. 2006;66(1):27–32.PubMed Hoybye C. Inflammatory markers in adults with Prader-Willi syndrome before and during 12 months growth hormone treatment. Horm Res. 2006;66(1):27–32.PubMed
37.
38.
go back to reference Vestergaard P, et al. Reduced bone mineral density and increased bone turnover in Prader-Willi syndrome compared with controls matched for sex and body mass index--a cross-sectional study. J Pediatr. 2004;144(5):614–9.CrossRefPubMed Vestergaard P, et al. Reduced bone mineral density and increased bone turnover in Prader-Willi syndrome compared with controls matched for sex and body mass index--a cross-sectional study. J Pediatr. 2004;144(5):614–9.CrossRefPubMed
39.
go back to reference van Nieuwpoort IC, et al. The GH/IGF-I Axis and Pituitary Function and Size in Adults with Prader-Willi Syndrome. Horm Res Paediatr. 2011;75(6):403–11. van Nieuwpoort IC, et al. The GH/IGF-I Axis and Pituitary Function and Size in Adults with Prader-Willi Syndrome. Horm Res Paediatr. 2011;75(6):403–11.
40.
go back to reference Lukaski HC, et al. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr. 1985;41(4):810–7.CrossRefPubMed Lukaski HC, et al. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr. 1985;41(4):810–7.CrossRefPubMed
41.
go back to reference Goldstone AP, et al. Appetite hormones and the transition to hyperphagia in children with Prader-Willi syndrome. Int J Obes. 2012;36(12):1564–70.CrossRef Goldstone AP, et al. Appetite hormones and the transition to hyperphagia in children with Prader-Willi syndrome. Int J Obes. 2012;36(12):1564–70.CrossRef
42.
go back to reference Viardot A, et al. Prader-Willi syndrome is associated with activation of the innate immune system independently of central adiposity and insulin resistance. J Clin Endocrinol Metab. 2010;95(7):3392–9.CrossRefPubMed Viardot A, et al. Prader-Willi syndrome is associated with activation of the innate immune system independently of central adiposity and insulin resistance. J Clin Endocrinol Metab. 2010;95(7):3392–9.CrossRefPubMed
43.
go back to reference Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Invest. 2015;38(12):1249–63. Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Invest. 2015;38(12):1249–63.
44.
go back to reference Hirsch HJ, et al. Sexual dichotomy of gonadal function in Prader-Willi syndrome from early infancy through the fourth decade. Hum Reprod. 2015;30(11):2587–96. Hirsch HJ, et al. Sexual dichotomy of gonadal function in Prader-Willi syndrome from early infancy through the fourth decade. Hum Reprod. 2015;30(11):2587–96.
45.
go back to reference Butler MG, et al. Causes of death in Prader-Willi syndrome: Prader-Willi Syndrome Association (USA) 40-year mortality survey. Genet Med. 2017;19(6):635–42. Butler MG, et al. Causes of death in Prader-Willi syndrome: Prader-Willi Syndrome Association (USA) 40-year mortality survey. Genet Med. 2017;19(6):635–42.
46.
go back to reference Bakker NE, et al. Eight years of growth hormone treatment in children with Prader-Willi syndrome: maintaining the positive effects. J Clin Endocrinol Metab. 2013;98(10):4013–22.CrossRefPubMed Bakker NE, et al. Eight years of growth hormone treatment in children with Prader-Willi syndrome: maintaining the positive effects. J Clin Endocrinol Metab. 2013;98(10):4013–22.CrossRefPubMed
47.
go back to reference Butler MG, et al. Effects of growth hormone treatment in adults with Prader-Willi syndrome. Growth Hormon IGF Res. 2013;23(3):81–7.CrossRef Butler MG, et al. Effects of growth hormone treatment in adults with Prader-Willi syndrome. Growth Hormon IGF Res. 2013;23(3):81–7.CrossRef
48.
go back to reference Festen DA, et al. Randomized controlled GH trial: effects on anthropometry, body composition and body proportions in a large group of children with Prader-Willi syndrome. Clin Endocrinol. 2008;69(3):443–51.CrossRef Festen DA, et al. Randomized controlled GH trial: effects on anthropometry, body composition and body proportions in a large group of children with Prader-Willi syndrome. Clin Endocrinol. 2008;69(3):443–51.CrossRef
49.
go back to reference Festen DA, et al. Adiponectin levels in prepubertal children with Prader-Willi syndrome before and during growth hormone therapy. J Clin Endocrinol Metab. 2007;92(4):1549–54.CrossRefPubMed Festen DA, et al. Adiponectin levels in prepubertal children with Prader-Willi syndrome before and during growth hormone therapy. J Clin Endocrinol Metab. 2007;92(4):1549–54.CrossRefPubMed
50.
51.
go back to reference Hazem A, et al. Body composition and quality of life in adults treated with GH therapy: a systematic review and meta-analysis. Eur J Endocrinol. 2012;166(1):13–20.CrossRefPubMed Hazem A, et al. Body composition and quality of life in adults treated with GH therapy: a systematic review and meta-analysis. Eur J Endocrinol. 2012;166(1):13–20.CrossRefPubMed
52.
go back to reference Kuppens RJ, et al. Metabolic health profile in young adults with Prader-Willi syndrome: results of a 2-year randomized, placebo-controlled, crossover GH trial. Clin Endocrinol. 2017;86(2):297–304.CrossRef Kuppens RJ, et al. Metabolic health profile in young adults with Prader-Willi syndrome: results of a 2-year randomized, placebo-controlled, crossover GH trial. Clin Endocrinol. 2017;86(2):297–304.CrossRef
53.
go back to reference Sanchez-Ortiga R, Klibanski A, Tritos NA. Effects of recombinant human growth hormone therapy in adults with Prader-Willi syndrome: a meta-analysis. Clin Endocrinol. 2012;77(1):86–93.CrossRef Sanchez-Ortiga R, Klibanski A, Tritos NA. Effects of recombinant human growth hormone therapy in adults with Prader-Willi syndrome: a meta-analysis. Clin Endocrinol. 2012;77(1):86–93.CrossRef
54.
go back to reference Siemensma EP, et al. Beneficial effects of growth hormone treatment on cognition in children with Prader-Willi syndrome: a randomized controlled trial and longitudinal study. J Clin Endocrinol Metab. 2012;97(7):2307–14.CrossRefPubMed Siemensma EP, et al. Beneficial effects of growth hormone treatment on cognition in children with Prader-Willi syndrome: a randomized controlled trial and longitudinal study. J Clin Endocrinol Metab. 2012;97(7):2307–14.CrossRefPubMed
55.
go back to reference Sode-Carlsen R, et al. Growth hormone treatment in adults with Prader-Willi syndrome: the Scandinavian study. Endocrine. 2012;41(2):191–9.CrossRefPubMed Sode-Carlsen R, et al. Growth hormone treatment in adults with Prader-Willi syndrome: the Scandinavian study. Endocrine. 2012;41(2):191–9.CrossRefPubMed
Metadata
Title
Body composition, adipokines, bone mineral density and bone remodeling markers in relation to IGF-1 levels in adults with Prader-Willi syndrome
Authors
I. Caroline van Nieuwpoort
Jos W. R. Twisk
Leopold M. G. Curfs
Paul Lips
Madeleine L. Drent
Publication date
01-12-2018
Publisher
BioMed Central
Published in
International Journal of Pediatric Endocrinology / Issue 1/2018
Electronic ISSN: 1687-9856
DOI
https://doi.org/10.1186/s13633-018-0055-4

Other articles of this Issue 1/2018

International Journal of Pediatric Endocrinology 1/2018 Go to the issue