Skip to main content
Top
Published in: Annals of Intensive Care 1/2018

Open Access 01-12-2018 | Research

Estimation of sodium and chloride storage in critically ill patients: a balance study

Authors: Lara Hessels, Annemieke Oude Lansink-Hartgring, Miriam Zeillemaker-Hoekstra, Maarten W. Nijsten

Published in: Annals of Intensive Care | Issue 1/2018

Login to get access

Abstract

Background

Nonosmotic sodium storage has been reported in animals, healthy individuals and patients with hypertension, hyperaldosteronism and end-stage kidney disease. Sodium storage has not been studied in ICU patients, who frequently receive large amounts of sodium chloride-containing fluids. The objective of our study was to estimate sodium that cannot be accounted for by balance studies in critically ill patients. Chloride was also studied. We used multiple scenarios and assumptions for estimating sodium and chloride balances.

Methods

We retrospectively analyzed patients admitted to the ICU after cardiothoracic surgery with complete fluid, sodium and chloride balance data for the first 4 days of ICU treatment. Balances were obtained from meticulously recorded data on intake and output. Missing extracellular osmotically active sodium (MES) was calculated by subtracting the expected change in plasma sodium from the observed change in plasma sodium derived from balance data. The same method was used to calculate missing chloride (MEC). To address considerable uncertainties on the estimated extracellular volume (ECV) and perspiration rate, various scenarios were used in which the size of the ECV and perspiration were varied.

Results

A total of 38 patients with 152 consecutive ICU days were analyzed. In our default scenario, we could not account for 296 ± 35 mmol of MES in the first four ICU days. The range of observed MES in the five scenarios varied from 111 ± 27 to 566 ± 41 mmol (P < 0.001). A cumulative value of 243 ± 46 mmol was calculated for MEC in the default scenario. The range of cumulative MEC was between 62 ± 27 and 471 ± 56 mmol (P = 0.001 and P = 0.003). MES minus MEC varied from 1 ± 51 to 123 ± 33 mmol in the five scenarios.

Conclusions

Our study suggests considerable disappearance of osmotically active sodium in critically ill patients and is the first to also suggest rather similar disappearance of chloride from the extracellular space. Various scenarios for insensible water loss and estimated size for the ECV resulted in considerable MES and MEC, although these estimates showed a large variation. The mechanisms and the tissue compartments responsible for this phenomenon require further investigation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Titze J, Maillet A, Lang R, Gunga HC, Johannes B, Gauguelin-Koch G, et al. Long-term sodium balance in humans in a terrestrial space station simulation study. Am J Kidney Dis. 2002;40:508–16.CrossRef Titze J, Maillet A, Lang R, Gunga HC, Johannes B, Gauguelin-Koch G, et al. Long-term sodium balance in humans in a terrestrial space station simulation study. Am J Kidney Dis. 2002;40:508–16.CrossRef
2.
go back to reference Titze J, Lang R, Ilies C, Schwind KH, Kirsch KA, Dietsch P, et al. Osmotically inactive skin Na+ storage in rats. Am J Physiol Renal Physiol. 2003;285:F1108–17.CrossRef Titze J, Lang R, Ilies C, Schwind KH, Kirsch KA, Dietsch P, et al. Osmotically inactive skin Na+ storage in rats. Am J Physiol Renal Physiol. 2003;285:F1108–17.CrossRef
3.
go back to reference Linz P, Santoro D, Renz W, Rieger J, Ruehle A, Ruff J, et al. Skin sodium measured with 23Na MRI at 7.0 T. NMR Biomed. 2015;28:54–62.PubMed Linz P, Santoro D, Renz W, Rieger J, Ruehle A, Ruff J, et al. Skin sodium measured with 23Na MRI at 7.0 T. NMR Biomed. 2015;28:54–62.PubMed
4.
go back to reference Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol. 2004;287:H203–8.CrossRef Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol. 2004;287:H203–8.CrossRef
5.
go back to reference Machnik A, Neuhoger W, Jantsch J, Dahlmann A, Tammela T, Machura K, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15:545–52.CrossRef Machnik A, Neuhoger W, Jantsch J, Dahlmann A, Tammela T, Machura K, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15:545–52.CrossRef
6.
go back to reference Wiig H, Schröder A, Neuhofer W, Jantsch J, Kopp C, Karlsen TV, et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest. 2013;123:2803–15.CrossRef Wiig H, Schröder A, Neuhofer W, Jantsch J, Kopp C, Karlsen TV, et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest. 2013;123:2803–15.CrossRef
7.
go back to reference Benz K, Schlote J, Daniel C, Kopp C, Dahlmann A, Schröder A, Cordasic N, et al. Mild salt-sensitive hypertension genetically determined low nephron number is associated with chloride but not sodium retention. Kidney Blood Press Res. 2018;43:1–11.CrossRef Benz K, Schlote J, Daniel C, Kopp C, Dahlmann A, Schröder A, Cordasic N, et al. Mild salt-sensitive hypertension genetically determined low nephron number is associated with chloride but not sodium retention. Kidney Blood Press Res. 2018;43:1–11.CrossRef
8.
go back to reference Hessels L, Oude Lansink A, Renes MH, van der Horst IC, Hoekstra M, Touw DJ, et al. Postoperative fluid retention after heart surgery is accompanied by a strongly positive sodium balance and a negative potassium balance. Physiol Rep. 2016;4:e12807.CrossRef Hessels L, Oude Lansink A, Renes MH, van der Horst IC, Hoekstra M, Touw DJ, et al. Postoperative fluid retention after heart surgery is accompanied by a strongly positive sodium balance and a negative potassium balance. Physiol Rep. 2016;4:e12807.CrossRef
9.
go back to reference Waite MD, Fuhrman SA, Badawi O, Zuckerman IH, Franey CS. Intensive care unit-acquired hypernatremia is an independent predictor of increased mortality and length of stay. J Crit Care. 2013;28:405–12.CrossRef Waite MD, Fuhrman SA, Badawi O, Zuckerman IH, Franey CS. Intensive care unit-acquired hypernatremia is an independent predictor of increased mortality and length of stay. J Crit Care. 2013;28:405–12.CrossRef
10.
go back to reference Oude Lansink-Hartgring A, Hessels L, Weigel J, de Smet AMGA, Gommers D, Panday PVN, et al. Long-term changes in dysnatremia incidence in the ICU: a shift from hyponatremia to hypernatremia. Ann Intensive Care. 2016;6:22.CrossRef Oude Lansink-Hartgring A, Hessels L, Weigel J, de Smet AMGA, Gommers D, Panday PVN, et al. Long-term changes in dysnatremia incidence in the ICU: a shift from hyponatremia to hypernatremia. Ann Intensive Care. 2016;6:22.CrossRef
11.
go back to reference Shaw AD, Raghunathan K, Peyerl FW, Munson SH, Paluskiewicz SM, Schermer CR. Association between intravenous chloride load during resuscitation and in-hospital mortality among patients with SIRS. Intensive Care Med. 2014;40:1897–905.CrossRef Shaw AD, Raghunathan K, Peyerl FW, Munson SH, Paluskiewicz SM, Schermer CR. Association between intravenous chloride load during resuscitation and in-hospital mortality among patients with SIRS. Intensive Care Med. 2014;40:1897–905.CrossRef
12.
go back to reference Yunos NM, Bellomo R, Story D, Kellum J. Bench-to-bedside review: chloride in critical illness. Crit Care. 2010;14:226.CrossRef Yunos NM, Bellomo R, Story D, Kellum J. Bench-to-bedside review: chloride in critical illness. Crit Care. 2010;14:226.CrossRef
13.
go back to reference Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). Crit Care. 2013;17:204.CrossRef Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). Crit Care. 2013;17:204.CrossRef
14.
go back to reference Cox P. Insensible water loss and its assessment in adult patients: a review. Acta Anaethesiol Scand. 1987;21:771–6.CrossRef Cox P. Insensible water loss and its assessment in adult patients: a review. Acta Anaethesiol Scand. 1987;21:771–6.CrossRef
15.
go back to reference Corcoran T, Rhodes JE, Clarke S, Myles PS, Ho KM. Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anaesth Analg. 2012;114:640–51.CrossRef Corcoran T, Rhodes JE, Clarke S, Myles PS, Ho KM. Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anaesth Analg. 2012;114:640–51.CrossRef
16.
go back to reference Guyton AC. Textbook of medical physiology. 11th ed. Philadelphia, PA: Saunders Elsevier; 2011. p. P285–P300. Guyton AC. Textbook of medical physiology. 11th ed. Philadelphia, PA: Saunders Elsevier; 2011. p. P285–P300.
17.
go back to reference Lindner G, Schwarz C, Kneidinger N, et al. Can we really predict the change in plasma sodium levels? An analysis of currently proposed formulae in hypernatraemic patients. Nephrol Dial Transplant. 2008;23:3501–8.CrossRef Lindner G, Schwarz C, Kneidinger N, et al. Can we really predict the change in plasma sodium levels? An analysis of currently proposed formulae in hypernatraemic patients. Nephrol Dial Transplant. 2008;23:3501–8.CrossRef
19.
go back to reference Olde Engberink RH, Rorije NM, van den Born BJ, Vogt L. Quantification of nonosmotic sodium storage capacity following acute hypertonic saline infusion in healthy individuals. Kidney Int. 2017;91:738–45.CrossRef Olde Engberink RH, Rorije NM, van den Born BJ, Vogt L. Quantification of nonosmotic sodium storage capacity following acute hypertonic saline infusion in healthy individuals. Kidney Int. 2017;91:738–45.CrossRef
20.
go back to reference Kopp C, Linz P, Wachsmuth L, Dahlmann A, Horbach T, Schöfl C, et al. (23)Na magnetic resonance imaging of tissue sodium. Hypertension. 2012;59:167–72.CrossRef Kopp C, Linz P, Wachsmuth L, Dahlmann A, Horbach T, Schöfl C, et al. (23)Na magnetic resonance imaging of tissue sodium. Hypertension. 2012;59:167–72.CrossRef
21.
go back to reference Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J, Müller DN, et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension. 2013;61:635–40.CrossRef Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J, Müller DN, et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension. 2013;61:635–40.CrossRef
22.
go back to reference Schneider MP, Ralf U, Kopp C, Scheppach JB, Toncar S, Wanner C, et al. Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J Am Soc Nephrol. 2017;28:1867–76.CrossRef Schneider MP, Ralf U, Kopp C, Scheppach JB, Toncar S, Wanner C, et al. Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J Am Soc Nephrol. 2017;28:1867–76.CrossRef
23.
go back to reference Dahlmann A, Dorfelt K, Eicher F, Linz P, Kopp C, Mössinger I, et al. Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients. Kidney Int. 2015;87:434–41.CrossRef Dahlmann A, Dorfelt K, Eicher F, Linz P, Kopp C, Mössinger I, et al. Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients. Kidney Int. 2015;87:434–41.CrossRef
24.
go back to reference Hammon M, Grossmann S, Linz P, Kopp C, Dahlmann A, Garlichs C, et al. 23Na magnetic resonance imaging of the lower leg of acute heart failure patients during diuretic treatment. PLoS ONE. 2015;10:e0141336.CrossRef Hammon M, Grossmann S, Linz P, Kopp C, Dahlmann A, Garlichs C, et al. 23Na magnetic resonance imaging of the lower leg of acute heart failure patients during diuretic treatment. PLoS ONE. 2015;10:e0141336.CrossRef
25.
go back to reference Van Ijzendoorn MCO, Buter H, Kingma WP, Navis GJ, Boerma EC. The development of intensive care unit acquired hypernatremia is not explained by sodium overload or water deficit: a retrospective cohort study on water balance and sodium handling. Crit Care Res Pract. 2016;2016:9571583.PubMedPubMedCentral Van Ijzendoorn MCO, Buter H, Kingma WP, Navis GJ, Boerma EC. The development of intensive care unit acquired hypernatremia is not explained by sodium overload or water deficit: a retrospective cohort study on water balance and sodium handling. Crit Care Res Pract. 2016;2016:9571583.PubMedPubMedCentral
26.
go back to reference Zaferani A, Talsma DT, Yazdani S, Celie JW, Aikio M, Heljasvaara R. Basement membrane zone collagens XV and XVIII proteoglycans mediate leukocyte influx in renal ischemia/reperfusion. PLoS ONE. 2014;9:e106732.CrossRef Zaferani A, Talsma DT, Yazdani S, Celie JW, Aikio M, Heljasvaara R. Basement membrane zone collagens XV and XVIII proteoglycans mediate leukocyte influx in renal ischemia/reperfusion. PLoS ONE. 2014;9:e106732.CrossRef
27.
go back to reference Severs D, Hoorn EJ, Rookmaker MB. A critical appraisal of intravenous fluids: from the physiological basis to clinical evidence. Nephrol Dial Transplant. 2015;30:178–87.CrossRef Severs D, Hoorn EJ, Rookmaker MB. A critical appraisal of intravenous fluids: from the physiological basis to clinical evidence. Nephrol Dial Transplant. 2015;30:178–87.CrossRef
28.
go back to reference Van Regenmortel N, Verbrugghe W, Roelant E, van den Wyngaert T, Jorens PG. Maintenance fluid therapy and fluid creep impose more significant fluid, sodium, and chloride burdens than resuscitation fluids in critically ill patients: a retrospective study in a tertiary mixed ICU population. Intensive Care Med. 2018;33:409–17.CrossRef Van Regenmortel N, Verbrugghe W, Roelant E, van den Wyngaert T, Jorens PG. Maintenance fluid therapy and fluid creep impose more significant fluid, sodium, and chloride burdens than resuscitation fluids in critically ill patients: a retrospective study in a tertiary mixed ICU population. Intensive Care Med. 2018;33:409–17.CrossRef
29.
go back to reference Titze J, Krause H, Hecht H, Dietsch P, Rittweger J, Lang R, et al. Reduced osmotically inactive Na+ storage capacity and hypertension in the Dahl model. Am J Physiol Renal Physiol. 2002;283:F134–41.CrossRef Titze J, Krause H, Hecht H, Dietsch P, Rittweger J, Lang R, et al. Reduced osmotically inactive Na+ storage capacity and hypertension in the Dahl model. Am J Physiol Renal Physiol. 2002;283:F134–41.CrossRef
30.
go back to reference Dahlmann A, Kopp C, Linz P, Cavallaro A, Seuss H, Eckardt KU, Luft FC, et al. Quantitative assessment of muscle injury by (23)Na magnetic resonance imaging. Springerplus. 2016;5:661.CrossRef Dahlmann A, Kopp C, Linz P, Cavallaro A, Seuss H, Eckardt KU, Luft FC, et al. Quantitative assessment of muscle injury by (23)Na magnetic resonance imaging. Springerplus. 2016;5:661.CrossRef
31.
go back to reference Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med. 2014;370:1626–35.CrossRef Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med. 2014;370:1626–35.CrossRef
32.
go back to reference Nagel AM, Lehmann-Horn F, Weber MA, Jurkat-Rott K, Wolf MB, Radbruch A, et al. In vivo 35Cl MRI imaging in humans: a feasibility study. Radiol. 2014;274:585–95.CrossRef Nagel AM, Lehmann-Horn F, Weber MA, Jurkat-Rott K, Wolf MB, Radbruch A, et al. In vivo 35Cl MRI imaging in humans: a feasibility study. Radiol. 2014;274:585–95.CrossRef
33.
go back to reference Baier S, Kramer P, Grudzenski S, Fatar M, Kirsch S, Schad LR. Chloride and sodium chemical shift imaging during acute stroke in a rat model at 9.4 Tesla. MAGMA. 2014;274:71–9.CrossRef Baier S, Kramer P, Grudzenski S, Fatar M, Kirsch S, Schad LR. Chloride and sodium chemical shift imaging during acute stroke in a rat model at 9.4 Tesla. MAGMA. 2014;274:71–9.CrossRef
34.
go back to reference Heer M, Baisch F, Kropp J, Gerzer R, Drummer C. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Physiol Renal Physiol. 2000;278:F585–95.CrossRef Heer M, Baisch F, Kropp J, Gerzer R, Drummer C. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Physiol Renal Physiol. 2000;278:F585–95.CrossRef
35.
go back to reference Schneider AG, Baldwin I, Freitag E, Glassford N, Bellomo R. Estimation of fluid status changes in critically ill patients: fluid balance chart or electronic bed weight? J Crit Care. 2012;27:745.e7–12.CrossRef Schneider AG, Baldwin I, Freitag E, Glassford N, Bellomo R. Estimation of fluid status changes in critically ill patients: fluid balance chart or electronic bed weight? J Crit Care. 2012;27:745.e7–12.CrossRef
36.
go back to reference Schneider AG, Thorpe C, Dellbridge K, Matalanis G, Bellomo R. Electronic bed weighing vs daily fluid balance changes after cardiac surgery. J Crit Care. 2013;28:1113e1–5.CrossRef Schneider AG, Thorpe C, Dellbridge K, Matalanis G, Bellomo R. Electronic bed weighing vs daily fluid balance changes after cardiac surgery. J Crit Care. 2013;28:1113e1–5.CrossRef
37.
go back to reference Androgué HJ, Madias NE. Aiding fluid description for the dysnatremias. Intensive Care Med. 1997;23:309–16.CrossRef Androgué HJ, Madias NE. Aiding fluid description for the dysnatremias. Intensive Care Med. 1997;23:309–16.CrossRef
38.
go back to reference Nguyen MK, Kurtz I. Analysis of current formulas used for treatment of the dysnatremias. Clin Exp Nephrol. 2004;8:12–6.CrossRef Nguyen MK, Kurtz I. Analysis of current formulas used for treatment of the dysnatremias. Clin Exp Nephrol. 2004;8:12–6.CrossRef
Metadata
Title
Estimation of sodium and chloride storage in critically ill patients: a balance study
Authors
Lara Hessels
Annemieke Oude Lansink-Hartgring
Miriam Zeillemaker-Hoekstra
Maarten W. Nijsten
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2018
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-018-0442-2

Other articles of this Issue 1/2018

Annals of Intensive Care 1/2018 Go to the issue