Skip to main content
Top
Published in: Annals of Intensive Care 1/2018

Open Access 01-12-2018 | Research

Carotid and femoral Doppler do not allow the assessment of passive leg raising effects

Authors: Valentina Girotto, Jean-Louis Teboul, Alexandra Beurton, Laura Galarza, Thierry Guedj, Christian Richard, Xavier Monnet

Published in: Annals of Intensive Care | Issue 1/2018

Login to get access

Abstract

Background

The hemodynamic effects of the passive leg raising (PLR) test must be assessed through a direct measurement of cardiac index (CI). We tested whether changes in Doppler common carotid blood flow (CBF) and common femoral artery blood flow (FBF) could detect a positive PLR test (increase in CI ≥ 10%). We also tested whether CBF and FBF changes could track simultaneous changes in CI during PLR and volume expansion. In 51 cases, we measured CI (PiCCO2), CBF and FBF before and during a PLR test (one performed for CBF and another for FBF measurements) and before and after volume expansion, which was performed if PLR was positive.

Results

Due to poor echogenicity or insufficient Doppler signal quality, CBF could be measured in 39 cases and FBF in only 14 cases. A positive PLR response could not be detected by changes in CBF, FBF, carotid nor by femoral peak systolic velocities (areas under the receiver operating characteristic curves: 0.58 ± 0.10, 0.57 ± 0.16, 0.56 ± 0.09 and 0.64 ± 10, respectively, all not different from 0.50). The correlations between simultaneous changes in CI and CBF and in CI and FBF during PLR and volume expansion were not significant (p = 0.41 and p = 0.27, respectively).

Conclusion

Doppler measurements of CBF and of FBF, as well as measurements of their peak velocities, are not reliable to assess cardiac output and its changes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.CrossRefPubMed Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.CrossRefPubMed
2.
go back to reference Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344–53.CrossRefPubMed Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344–53.CrossRefPubMed
4.
go back to reference Guérin L, Teboul JL, Persichini R, et al. Effects of passive leg raising and volume expansion on mean systemic pressure and venous return in shock in humans. Crete Care. 2015;19:411.CrossRef Guérin L, Teboul JL, Persichini R, et al. Effects of passive leg raising and volume expansion on mean systemic pressure and venous return in shock in humans. Crete Care. 2015;19:411.CrossRef
5.
go back to reference Monnet X, Rienzo M, Osman D, et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34:1402–7.CrossRefPubMed Monnet X, Rienzo M, Osman D, et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34:1402–7.CrossRefPubMed
7.
go back to reference Monnet X, Marik P, Teboul JL. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42:1935–47.CrossRefPubMed Monnet X, Marik P, Teboul JL. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42:1935–47.CrossRefPubMed
8.
go back to reference Teboul JL, Saugel B, Cecconi M, et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016;42:1350–9.CrossRefPubMed Teboul JL, Saugel B, Cecconi M, et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016;42:1350–9.CrossRefPubMed
9.
go back to reference Marik PE, Levitov A, Young A, et al. The use of bioreactance and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest. 2013;143:364–70.CrossRefPubMed Marik PE, Levitov A, Young A, et al. The use of bioreactance and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest. 2013;143:364–70.CrossRefPubMed
10.
go back to reference Préau S, Saulnier F, Dewavrin F, et al. Passive leg raising is predictive of fluid responsiveness in spontaneously breathing patients with severe sepsis or acute pancreatitis. Crit Care Med. 2010;38:819–25.CrossRefPubMed Préau S, Saulnier F, Dewavrin F, et al. Passive leg raising is predictive of fluid responsiveness in spontaneously breathing patients with severe sepsis or acute pancreatitis. Crit Care Med. 2010;38:819–25.CrossRefPubMed
11.
go back to reference Weber U, Glassford NJ, Eastwood GM, et al. A pilot assessment of carotid and brachial artery blood flow estimation using ultrasound Doppler in cardiac surgery patients. J Cardiothorac Vasc Anesth. 2016;30:141–8.CrossRefPubMed Weber U, Glassford NJ, Eastwood GM, et al. A pilot assessment of carotid and brachial artery blood flow estimation using ultrasound Doppler in cardiac surgery patients. J Cardiothorac Vasc Anesth. 2016;30:141–8.CrossRefPubMed
12.
go back to reference Roehrig C, Govier M, Robinson J, et al. A carotid Doppler flowmetry correlates poorly with thermodilution cardiac output following cardiac surgery. Acta Anaesthesiol Scand. 2017;61:31–8.CrossRefPubMed Roehrig C, Govier M, Robinson J, et al. A carotid Doppler flowmetry correlates poorly with thermodilution cardiac output following cardiac surgery. Acta Anaesthesiol Scand. 2017;61:31–8.CrossRefPubMed
13.
go back to reference Peachey T, Tang A, Baker EC, et al. The assessment of circulating volume using inferior vena cava collapse index and carotid Doppler velocity time integral in healthy volunteers: a pilot study. Scand J Trauma Resusc Emerg Med. 2016;24:108.CrossRefPubMedPubMedCentral Peachey T, Tang A, Baker EC, et al. The assessment of circulating volume using inferior vena cava collapse index and carotid Doppler velocity time integral in healthy volunteers: a pilot study. Scand J Trauma Resusc Emerg Med. 2016;24:108.CrossRefPubMedPubMedCentral
14.
go back to reference Weber U, Glassford NJ, Eastwood GM, et al. A pilot study of the relationship between Doppler-estimated carotid and brachial artery flow and cardiac index. Anaesthesia. 2015;70:1140–7.CrossRefPubMed Weber U, Glassford NJ, Eastwood GM, et al. A pilot study of the relationship between Doppler-estimated carotid and brachial artery flow and cardiac index. Anaesthesia. 2015;70:1140–7.CrossRefPubMed
16.
go back to reference Monnet X, Persichini R, Ktari M, Jozwiak M, Richard C, Teboul JL. Precision of the transpulmonary thermodilution measurements. Crit Care. 2011;27:15. Monnet X, Persichini R, Ktari M, Jozwiak M, Richard C, Teboul JL. Precision of the transpulmonary thermodilution measurements. Crit Care. 2011;27:15.
17.
go back to reference Kupersztych-Hagege E, Teboul JL, Artigas A, et al. Bioreactance is not reliable for estimating cardiac output and the effects of passive leg raising in critically ill patients. Br J Anaesth. 2013;111:961–6.CrossRefPubMed Kupersztych-Hagege E, Teboul JL, Artigas A, et al. Bioreactance is not reliable for estimating cardiac output and the effects of passive leg raising in critically ill patients. Br J Anaesth. 2013;111:961–6.CrossRefPubMed
18.
19.
go back to reference Eicke BM, von Schlichting J, Mohr-Ahaly S, et al. Lack of association between carotid artery volume blood flow and cardiac output. J Ultrasound Med. 2001;20:1293–8.CrossRefPubMed Eicke BM, von Schlichting J, Mohr-Ahaly S, et al. Lack of association between carotid artery volume blood flow and cardiac output. J Ultrasound Med. 2001;20:1293–8.CrossRefPubMed
20.
go back to reference Gassner M, Killu K, Bauman Z, et al. Feasibility of common carotid artery point of care ultrasound in cardiac output measurements compared to invasive methods. J Ultrasound. 2014;18:127–33.CrossRefPubMedPubMedCentral Gassner M, Killu K, Bauman Z, et al. Feasibility of common carotid artery point of care ultrasound in cardiac output measurements compared to invasive methods. J Ultrasound. 2014;18:127–33.CrossRefPubMedPubMedCentral
21.
go back to reference Tranmer BI, Keller TS, Kindt GW, et al. Loss of cerebral regulation during cardiac output variations in focal cerebral ischemia. J Neurosurg. 1992;77:253–9.CrossRefPubMed Tranmer BI, Keller TS, Kindt GW, et al. Loss of cerebral regulation during cardiac output variations in focal cerebral ischemia. J Neurosurg. 1992;77:253–9.CrossRefPubMed
22.
go back to reference Yazici B, Erdoğmuş B, Tugay A. Cerebral blood flow measurements of the extracranial carotid and vertebral arteries with Doppler ultrasonography in healthy adults. Diagn Interv Radiol. 2005;11:195–8.PubMed Yazici B, Erdoğmuş B, Tugay A. Cerebral blood flow measurements of the extracranial carotid and vertebral arteries with Doppler ultrasonography in healthy adults. Diagn Interv Radiol. 2005;11:195–8.PubMed
23.
go back to reference Sato K, Ogoh S, Hirasawa A, et al. The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans. J Physiol. 2015;589:2847–56.CrossRef Sato K, Ogoh S, Hirasawa A, et al. The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans. J Physiol. 2015;589:2847–56.CrossRef
24.
go back to reference Meng L, Hou W, Chui J, et al. Cardiac output and cerebral blood flow: the integrated regulation of brain perfusion in adult humans. Anesthesiology. 2015;123:1198–208.CrossRefPubMed Meng L, Hou W, Chui J, et al. Cardiac output and cerebral blood flow: the integrated regulation of brain perfusion in adult humans. Anesthesiology. 2015;123:1198–208.CrossRefPubMed
26.
go back to reference Scheel P, Ruge C, Schöning M. Flow velocity and flow volume measurements in the extracranial carotid and vertebral arteries in healthy adults: reference data and the effects of age. Ultrasound Med Biol. 2000;26:1261–6.CrossRefPubMed Scheel P, Ruge C, Schöning M. Flow velocity and flow volume measurements in the extracranial carotid and vertebral arteries in healthy adults: reference data and the effects of age. Ultrasound Med Biol. 2000;26:1261–6.CrossRefPubMed
27.
go back to reference Gill RW. Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol. 1985;11:625–41.CrossRefPubMed Gill RW. Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol. 1985;11:625–41.CrossRefPubMed
Metadata
Title
Carotid and femoral Doppler do not allow the assessment of passive leg raising effects
Authors
Valentina Girotto
Jean-Louis Teboul
Alexandra Beurton
Laura Galarza
Thierry Guedj
Christian Richard
Xavier Monnet
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2018
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-018-0413-7

Other articles of this Issue 1/2018

Annals of Intensive Care 1/2018 Go to the issue