Skip to main content
Top
Published in: Annals of Intensive Care 1/2017

Open Access 01-12-2017 | Research

Hemofiltration induces generation of leukocyte-derived CD31+/CD41− microvesicles in sepsis

Authors: Georg Franz Lehner, Ulrich Harler, Clemens Feistritzer, Viktoria Maria Haller, Julia Hasslacher, Romuald Bellmann, Michael Joannidis

Published in: Annals of Intensive Care | Issue 1/2017

Login to get access

Abstract

Background

Microvesicles (MV) are extracellular vesicles known to be associated with cellular activation and inflammation. Hemofiltration is an effective blood purification technique for patients with renal failure and possibly also eliminates inflammatory mediators in the setting of sepsis. On the other hand, proinflammatory stimuli are induced by blood contacting the artificial membrane during extracorporeal blood purification. In chronic dialysis patients a systemic increase in MV has been described. The aim of the study was to investigate whether hemofilter passage of blood in continuous veno-venous hemofiltration (CVVH) alters MV composition and levels in critically ill patients with sepsis.

Methods

Pre- and postfilter bloods as well as ultrafiltrate samples from intensive care unit patients with severe sepsis were obtained during CVVH with regional citrate anticoagulation. MV subtypes in blood were analyzed by high-sensitivity flow cytometry. Additionally, tissue factor (TF) levels and MV-associated TF activities as well as MV activities were quantified. All parameters were corrected for hemoconcentration applied during CVVH.

Results

Twelve patients were analyzed. A significant increase in presumably mostly leukocyte-derived CD31+/CD41− MV (1.32 (1.09–1.93)-fold [median (25th–75th quartiles)], p = 0.021) was observed post- to prefilter, whereas platelet-derived MV as well as AnnexinV-binding MV were unaltered. Increments of AnnexinV+, CD42b+ and CD31+/CD41− MV post- to prefilter correlated with filtration fraction (FF) (all p < 0.05). Significant reductions in MV activity [0.72 (0.62–0.84)-fold, p = 0.002] and TF level [0.95 (0.87–0.99)-fold, p = 0.0093] were detected postfilter compared to prefilter. No MV activity was measurable in ultrafiltrate samples.

Conclusions

Despite clearing a fraction of small PS-exposing MV CVVH does not eliminate larger MV. Concurrently, CVVH induces the release of CD31+/CD4− MV that indicate leukocyte activation during hemofilter passage in septic patients. Increments of several MV subtypes within the hemofilter correlate with FF, which supports common recommendations to keep FF low. A fraction of TF is being cleared by CVVH via ultrafiltration.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jörres, A. Acute kidney injury: choice of the initial modality for renal replacement therapy. Med Klin Intensivmed Notfmed. 2015;110(4):251–5.CrossRefPubMed Jörres, A. Acute kidney injury: choice of the initial modality for renal replacement therapy. Med Klin Intensivmed Notfmed. 2015;110(4):251–5.CrossRefPubMed
2.
go back to reference Payen D, Mateo J, Cavaillon JM, Fraisse F, Floriot C, Vicaut E, et al. Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: a randomized controlled trial. Crit Care Med. 2009;37(3):803–10.CrossRefPubMed Payen D, Mateo J, Cavaillon JM, Fraisse F, Floriot C, Vicaut E, et al. Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: a randomized controlled trial. Crit Care Med. 2009;37(3):803–10.CrossRefPubMed
3.
go back to reference Honore PM, Jamez J, Wauthier M, Lee PA, Dugernier T, Pirenne B, et al. Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med. 2000;28(11):3581–7.CrossRefPubMed Honore PM, Jamez J, Wauthier M, Lee PA, Dugernier T, Pirenne B, et al. Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med. 2000;28(11):3581–7.CrossRefPubMed
4.
go back to reference De Vriese AS, Colardyn FA, Philippe JJ, Vanholder RC, De Sutter JH, Lameire NH. Cytokine removal during continuous hemofiltration in septic patients. J Am Soc Nephrol. 1999;10(4):846–53.PubMed De Vriese AS, Colardyn FA, Philippe JJ, Vanholder RC, De Sutter JH, Lameire NH. Cytokine removal during continuous hemofiltration in septic patients. J Am Soc Nephrol. 1999;10(4):846–53.PubMed
5.
6.
go back to reference Gritters M, Grooteman MP, Schoorl M, Schoorl M, Bartels PC, Scheffer PG, et al. Citrate anticoagulation abolishes degranulation of polymorphonuclear cells and platelets and reduces oxidative stress during haemodialysis. Nephrol Dial Transplant. 2006;21(1):153–9.CrossRefPubMed Gritters M, Grooteman MP, Schoorl M, Schoorl M, Bartels PC, Scheffer PG, et al. Citrate anticoagulation abolishes degranulation of polymorphonuclear cells and platelets and reduces oxidative stress during haemodialysis. Nephrol Dial Transplant. 2006;21(1):153–9.CrossRefPubMed
7.
go back to reference Oudemans-van Straaten HM, Kellum JA, Bellomo R. Clinical review: anticoagulation for continuous renal replacement therapy–heparin or citrate? Crit Care. 2011;15(1):202.CrossRefPubMedPubMedCentral Oudemans-van Straaten HM, Kellum JA, Bellomo R. Clinical review: anticoagulation for continuous renal replacement therapy–heparin or citrate? Crit Care. 2011;15(1):202.CrossRefPubMedPubMedCentral
8.
go back to reference Oudemans-van Straaten HM. Hemostasis and thrombosis in continuous renal replacement treatment. Semin Thromb Hemost. 2015;41(1):91–8.CrossRefPubMed Oudemans-van Straaten HM. Hemostasis and thrombosis in continuous renal replacement treatment. Semin Thromb Hemost. 2015;41(1):91–8.CrossRefPubMed
9.
go back to reference Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93.CrossRefPubMed Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93.CrossRefPubMed
10.
go back to reference Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68(16):2667–88.CrossRefPubMedPubMedCentral Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68(16):2667–88.CrossRefPubMedPubMedCentral
11.
go back to reference Mastronardi ML, Mostefai HA, Meziani F, Martinez MC, Asfar P, Andriantsitohaina R. Circulating microparticles from septic shock patients exert differential tissue expression of enzymes related to inflammation and oxidative stress. Crit Care Med. 2011;39(7):1739–48.CrossRefPubMed Mastronardi ML, Mostefai HA, Meziani F, Martinez MC, Asfar P, Andriantsitohaina R. Circulating microparticles from septic shock patients exert differential tissue expression of enzymes related to inflammation and oxidative stress. Crit Care Med. 2011;39(7):1739–48.CrossRefPubMed
12.
go back to reference Delabranche X, Boisrame-Helms J, Asfar P, Berger A, Mootien Y, Lavigne T, et al. Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med. 2013;39(10):1695–703.CrossRefPubMed Delabranche X, Boisrame-Helms J, Asfar P, Berger A, Mootien Y, Lavigne T, et al. Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med. 2013;39(10):1695–703.CrossRefPubMed
13.
go back to reference Faure V, Dou L, Sabatier F, Cerini C, Sampol J, Berland Y, et al. Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost. 2006;4(3):566–73.CrossRefPubMed Faure V, Dou L, Sabatier F, Cerini C, Sampol J, Berland Y, et al. Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost. 2006;4(3):566–73.CrossRefPubMed
14.
go back to reference Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101(6):1644–55.CrossRefPubMed Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101(6):1644–55.CrossRefPubMed
15.
go back to reference Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.CrossRefPubMed Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.CrossRefPubMed
16.
go back to reference Le Gall JR, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270(24):2957–63.CrossRefPubMed Le Gall JR, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270(24):2957–63.CrossRefPubMed
17.
go back to reference Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on sepsis-related problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707–10.CrossRefPubMed Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on sepsis-related problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707–10.CrossRefPubMed
18.
go back to reference Abdelhafeez AH, Jeziorczak PM, Schaid TR, Hoefs SL, Kaul S, Nanchal R, et al. Clinical CVVH model removes endothelium-derived microparticles from circulation. J Extracell Vesicles. 2014;3(1):23498. doi:10.3402/jev.v3.23498.CrossRef Abdelhafeez AH, Jeziorczak PM, Schaid TR, Hoefs SL, Kaul S, Nanchal R, et al. Clinical CVVH model removes endothelium-derived microparticles from circulation. J Extracell Vesicles. 2014;3(1):23498. doi:10.​3402/​jev.​v3.​23498.CrossRef
19.
go back to reference Lehner GF, Harler U, Haller VM, Feistritzer C, Hasslacher J, Dunzendorfer S, et al. Characterization of microvesicles in septic shock using high-sensitivity flow cytometry. Shock. 2016;46(4):373–81.CrossRefPubMed Lehner GF, Harler U, Haller VM, Feistritzer C, Hasslacher J, Dunzendorfer S, et al. Characterization of microvesicles in septic shock using high-sensitivity flow cytometry. Shock. 2016;46(4):373–81.CrossRefPubMed
20.
go back to reference Mutunga M, Fulton B, Bullock R, Batchelor A, Gascoigne A, Gillespie JI, et al. Circulating endothelial cells in patients with septic shock. Am J Respir Crit Care Med. 2001;163(1):195–200.CrossRefPubMed Mutunga M, Fulton B, Bullock R, Batchelor A, Gascoigne A, Gillespie JI, et al. Circulating endothelial cells in patients with septic shock. Am J Respir Crit Care Med. 2001;163(1):195–200.CrossRefPubMed
21.
go back to reference Kozek-Langenecker SA, Spiss CK, Michalek-Sauberer A, Felfernig M, Zimpfer M. Effect of prostacyclin on platelets, polymorphonuclear cells, and heterotypic cell aggregation during hemofiltration. Crit Care Med. 2003;31(3):864–8.CrossRefPubMed Kozek-Langenecker SA, Spiss CK, Michalek-Sauberer A, Felfernig M, Zimpfer M. Effect of prostacyclin on platelets, polymorphonuclear cells, and heterotypic cell aggregation during hemofiltration. Crit Care Med. 2003;31(3):864–8.CrossRefPubMed
22.
go back to reference Klein SJ, Joannidis M. Renal replacement therapy in acute kidney injury. Med Klin Intensivmed Notfmed. 2017;112(5):437–443.CrossRefPubMed Klein SJ, Joannidis M. Renal replacement therapy in acute kidney injury. Med Klin Intensivmed Notfmed. 2017;112(5):437–443.CrossRefPubMed
23.
go back to reference Bohler J, Donauer J, Birmelin M, Schollmeyer PJ, Horl WH. Mediators of complement-independent granulocyte activation during haemodialysis: role of calcium, prostaglandins and leukotrienes. Nephrol Dial Transplant. 1993;8(12):1359–65.PubMed Bohler J, Donauer J, Birmelin M, Schollmeyer PJ, Horl WH. Mediators of complement-independent granulocyte activation during haemodialysis: role of calcium, prostaglandins and leukotrienes. Nephrol Dial Transplant. 1993;8(12):1359–65.PubMed
24.
go back to reference Miyazaki Y, Nomura S, Miyake T, Kagawa H, Kitada C, Taniguchi H, et al. High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood. 1996;88(9):3456–64.PubMed Miyazaki Y, Nomura S, Miyake T, Kagawa H, Kitada C, Taniguchi H, et al. High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood. 1996;88(9):3456–64.PubMed
25.
go back to reference Lehner GF, Schopf M, Harler U, Pechlaner C, Joannidis M. Repeated premature hemofilter clotting during regional citrate anticoagulation as indicator of heparin induced thrombocytopenia. Blood Purif. 2014;38(2):127–30.CrossRefPubMed Lehner GF, Schopf M, Harler U, Pechlaner C, Joannidis M. Repeated premature hemofilter clotting during regional citrate anticoagulation as indicator of heparin induced thrombocytopenia. Blood Purif. 2014;38(2):127–30.CrossRefPubMed
26.
go back to reference Egorina EM, Sovershaev MA, Olsen JO, Osterud B. Granulocytes do not express but acquire monocyte-derived tissue factor in whole blood: evidence for a direct transfer. Blood. 2008;111(3):1208–16.CrossRefPubMed Egorina EM, Sovershaev MA, Olsen JO, Osterud B. Granulocytes do not express but acquire monocyte-derived tissue factor in whole blood: evidence for a direct transfer. Blood. 2008;111(3):1208–16.CrossRefPubMed
27.
go back to reference Key NS, Mackman N. Tissue factor and its measurement in whole blood, plasma, and microparticles. Semin Thromb Hemost. 2010;36(8):865–75.CrossRefPubMed Key NS, Mackman N. Tissue factor and its measurement in whole blood, plasma, and microparticles. Semin Thromb Hemost. 2010;36(8):865–75.CrossRefPubMed
28.
go back to reference Cardigan RA, McGloin H, Mackie IJ, Machin SJ, Singer M. Activation of the tissue factor pathway occurs during continuous venovenous hemofiltration. Kidney Int. 1999;55(4):1568–74.CrossRefPubMed Cardigan RA, McGloin H, Mackie IJ, Machin SJ, Singer M. Activation of the tissue factor pathway occurs during continuous venovenous hemofiltration. Kidney Int. 1999;55(4):1568–74.CrossRefPubMed
29.
go back to reference Bouman CS, de Pont AC, Meijers JC, Bakhtiari K, Roem D, Zeerleder S, et al. The effects of continuous venovenous hemofiltration on coagulation activation. Crit Care. 2006;10(5):R150.CrossRefPubMedPubMedCentral Bouman CS, de Pont AC, Meijers JC, Bakhtiari K, Roem D, Zeerleder S, et al. The effects of continuous venovenous hemofiltration on coagulation activation. Crit Care. 2006;10(5):R150.CrossRefPubMedPubMedCentral
Metadata
Title
Hemofiltration induces generation of leukocyte-derived CD31+/CD41− microvesicles in sepsis
Authors
Georg Franz Lehner
Ulrich Harler
Clemens Feistritzer
Viktoria Maria Haller
Julia Hasslacher
Romuald Bellmann
Michael Joannidis
Publication date
01-12-2017
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2017
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-017-0312-3

Other articles of this Issue 1/2017

Annals of Intensive Care 1/2017 Go to the issue