Skip to main content
Top
Published in: Annals of Intensive Care 1/2015

Open Access 01-12-2015 | Research

Late evaluation of upper limb arterial flow in patients after long radial (PiCCO™) catheter placement

Authors: Lucas Rovira, Gerardo Aguilar, Alberto Cuñat, Francisco J Belda

Published in: Annals of Intensive Care | Issue 1/2015

Login to get access

Abstract

Background

The purpose of the study was to assess blood flow in the upper limb arteries after prolonged catheterization with long radial artery catheters (LRC) which reach the subclavian artery compared to catheterization with standard short radial artery catheters (SRC) and a group of upper limb flow without any catheter placement (NOCATH), with both SRC and NOCATH as control groups.

Methods

Prospective observational study with 20 patients admitted to ICU (40 upper limbs) with LRC and/or SRC inserted >48 h for hemodynamic monitoring. More than 45 days after catheter withdrawal, patients underwent a Doppler ultrasound study of both upper limbs. Arterial flows of arms with LRC (FlowLRC) were compared with arterial flows of arms with SRC (FlowSRC) and those without any catheter (FlowNOCATH).

Results

Flow in the ulnar, brachial, and subclavian arteries did not show any significant difference between the two types of catheters. The only significant difference was in the radial arteries, showing a lower mean flow in the arms with LRC than in the arms with SRC (2.2 vs. 8.5 cc/min; p = 0.041). Flow reduction in the radial artery (74%) in the arms with LRC compared to the SRC arms showed a tendency to increase ulnar flow as a compensatory mechanism. None of the patients with LRC included in our study had any ischemic events, in spite of observing complete flow occlusion in three radial arteries (18%) from the Doppler study.

Conclusions

In this sample, the use of PiCCO long radial catheters reaching the subclavian artery did not produce chronic significant changes in brachial or subclavian flows. However, LRC produces a significant reduction in radial flow and a tendency to increase ulnar flow. When comparing these blood flow changes with those produced by SRC use, only the radial flow reduction was significantly lower, whereas the other arterial flow changes did not significantly differ.
Literature
1.
go back to reference De Backer D, Fagnoul D, Herpain A. The role of invasive techniques in cardiopulmonary evaluation. Curr Opin Crit Care. 2013;19:228–33.CrossRefPubMed De Backer D, Fagnoul D, Herpain A. The role of invasive techniques in cardiopulmonary evaluation. Curr Opin Crit Care. 2013;19:228–33.CrossRefPubMed
2.
go back to reference Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SK, Brampton W, et al. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev. 2013;2:CD003408.PubMed Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SK, Brampton W, et al. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev. 2013;2:CD003408.PubMed
3.
go back to reference Belda FJ, Aguilar G, Teboul JL, Pestaña D, Redondo FJ, Malbrain M, et al. Complications related to less-invasive haemodynamic monitoring. Br J Anaesth. 2011;106:482–6.CrossRefPubMed Belda FJ, Aguilar G, Teboul JL, Pestaña D, Redondo FJ, Malbrain M, et al. Complications related to less-invasive haemodynamic monitoring. Br J Anaesth. 2011;106:482–6.CrossRefPubMed
4.
go back to reference Orme RM, Pigott DW, Mihm FG. Measurement of cardiac output by transpulmonary arterial thermodilution using a long radial artery catheter. A comparison with intermittent pulmonary artery thermodilution. Anaesthesia. 2004;59:590–4.CrossRefPubMed Orme RM, Pigott DW, Mihm FG. Measurement of cardiac output by transpulmonary arterial thermodilution using a long radial artery catheter. A comparison with intermittent pulmonary artery thermodilution. Anaesthesia. 2004;59:590–4.CrossRefPubMed
5.
go back to reference Rulf EN, Mitchell MM, Prakash O, Rijsterborg H, Cruz E, Deryck YL, et al. Measurement of arterial pressure after cardiopulmonary bypass with long radial artery catheters. J A Cardiothorac Anesth. 1990;4:19–24.CrossRef Rulf EN, Mitchell MM, Prakash O, Rijsterborg H, Cruz E, Deryck YL, et al. Measurement of arterial pressure after cardiopulmonary bypass with long radial artery catheters. J A Cardiothorac Anesth. 1990;4:19–24.CrossRef
6.
go back to reference Brzezinski M, Luisetti T, London MJ. Radial artery cannulation: a comprehensive review of recent anatomic and physiologic investigations. Anesth Analg. 2009;109:1763–81. doi:10.1213/ANE.0b013e3181bbd416.CrossRefPubMed Brzezinski M, Luisetti T, London MJ. Radial artery cannulation: a comprehensive review of recent anatomic and physiologic investigations. Anesth Analg. 2009;109:1763–81. doi:10.1213/ANE.0b013e3181bbd416.CrossRefPubMed
7.
go back to reference Jolly SS, Amlani S, Hamon M, Yusuf S, Mehta SR. Radial versus femoral access for coronary angiography or intervention and the impact on major bleeding and ischemic events: a systematic review and meta-analysis of randomized trials. Am Heart J. 2009;157:132–40.CrossRefPubMed Jolly SS, Amlani S, Hamon M, Yusuf S, Mehta SR. Radial versus femoral access for coronary angiography or intervention and the impact on major bleeding and ischemic events: a systematic review and meta-analysis of randomized trials. Am Heart J. 2009;157:132–40.CrossRefPubMed
8.
go back to reference Davis FM, Stewart JM. Radial artery cannulation. A prospective study in patients undergoing cardiothoracic surgery. Br J Anaesth. 1980;52:41–7.CrossRefPubMed Davis FM, Stewart JM. Radial artery cannulation. A prospective study in patients undergoing cardiothoracic surgery. Br J Anaesth. 1980;52:41–7.CrossRefPubMed
9.
go back to reference Bedford RF. Long-term radial artery cannulation: effects on subsequent vessel function. Crit Care Med. 1978;6:64–7.CrossRefPubMed Bedford RF. Long-term radial artery cannulation: effects on subsequent vessel function. Crit Care Med. 1978;6:64–7.CrossRefPubMed
10.
go back to reference Eker HE, Tuzuner A, Yilmaz AA, Alanoglu Z, Ates Y. The impact of two arterial catheters, different in diameter and length, on postcannulation radial artery diameter, blood flow, and occlusion in atherosclerotic patients. J Anesth. 2009;23:347–52.CrossRefPubMed Eker HE, Tuzuner A, Yilmaz AA, Alanoglu Z, Ates Y. The impact of two arterial catheters, different in diameter and length, on postcannulation radial artery diameter, blood flow, and occlusion in atherosclerotic patients. J Anesth. 2009;23:347–52.CrossRefPubMed
11.
go back to reference Boyce JM, Pittet D, Healthcare Infection Control Practices Advisory Committee, HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Guideline for hand hygiene in health-care settings: recommendations of the Healthcare Infection Control Practices Advisory Committee and HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. MMWR Morb Mortal Wkly. 2002;51:1–44. Boyce JM, Pittet D, Healthcare Infection Control Practices Advisory Committee, HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Guideline for hand hygiene in health-care settings: recommendations of the Healthcare Infection Control Practices Advisory Committee and HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. MMWR Morb Mortal Wkly. 2002;51:1–44.
12.
go back to reference Seldinger S. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta Radiol. 1953;39:368–76.CrossRefPubMed Seldinger S. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta Radiol. 1953;39:368–76.CrossRefPubMed
13.
go back to reference Mangar D, Thrush DN, Connell GR, Downs JB. Direct or modified Seldinger guide wire-directed technique for arterial catheter insertion. Anesth Analg. 1993;76:714–7.PubMed Mangar D, Thrush DN, Connell GR, Downs JB. Direct or modified Seldinger guide wire-directed technique for arterial catheter insertion. Anesth Analg. 1993;76:714–7.PubMed
14.
go back to reference Brodman RF, Hirsh LE, Frame R. Effect of radial artery harvest on collateral forearm blood flow and digital perfusion. J Thorac Cardiovasc Surg. 2002;123:512–6.CrossRefPubMed Brodman RF, Hirsh LE, Frame R. Effect of radial artery harvest on collateral forearm blood flow and digital perfusion. J Thorac Cardiovasc Surg. 2002;123:512–6.CrossRefPubMed
15.
go back to reference Schena S, Crabtree TD, Baker KA, Guthrie TJ, Curci J, Damiano RJ, et al. Absence of deterioration of vascular function of the donor limb at late follow-up after radial artery harvesting. J Thorac Cardiovasc Surg. 2011;142:298–301.CrossRefPubMed Schena S, Crabtree TD, Baker KA, Guthrie TJ, Curci J, Damiano RJ, et al. Absence of deterioration of vascular function of the donor limb at late follow-up after radial artery harvesting. J Thorac Cardiovasc Surg. 2011;142:298–301.CrossRefPubMed
16.
go back to reference Scheer B, Perel A, Pfeiffer UJ. Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care. 2002;6:199–204.CrossRefPubMedCentralPubMed Scheer B, Perel A, Pfeiffer UJ. Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care. 2002;6:199–204.CrossRefPubMedCentralPubMed
17.
go back to reference Bedford RF, Wollman H. Complications of percutaneous radial-artery cannulation: an objective prospective study in man. Anesthesiology. 1973;38:228–36.CrossRefPubMed Bedford RF, Wollman H. Complications of percutaneous radial-artery cannulation: an objective prospective study in man. Anesthesiology. 1973;38:228–36.CrossRefPubMed
19.
go back to reference Faul F, Erdfelder E, Lang A, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.CrossRefPubMed Faul F, Erdfelder E, Lang A, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.CrossRefPubMed
Metadata
Title
Late evaluation of upper limb arterial flow in patients after long radial (PiCCO™) catheter placement
Authors
Lucas Rovira
Gerardo Aguilar
Alberto Cuñat
Francisco J Belda
Publication date
01-12-2015
Publisher
Springer Paris
Published in
Annals of Intensive Care / Issue 1/2015
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-014-0041-9

Other articles of this Issue 1/2015

Annals of Intensive Care 1/2015 Go to the issue