Skip to main content
Top
Published in: Israel Journal of Health Policy Research 1/2016

Open Access 01-12-2016 | Original research article

Mortality, hospital days and expenditures attributable to ambient air pollution from particulate matter in Israel

Authors: Gary M. Ginsberg, Ehud Kaliner, Itamar Grotto

Published in: Israel Journal of Health Policy Research | Issue 1/2016

Login to get access

Abstract

Background

Worldwide, ambient air pollution accounts for around 3.7 million deaths annually. Measuring the burden of disease is important not just for advocacy but also is a first step towards carrying out a full cost-utility analysis in order to prioritise technological interventions that are available to reduce air pollution (and subsequent morbidity and mortality) from industrial, power generating and vehicular sources.

Methods

We calculated the average national exposure to particulate matter particles less than 2.5 μm (PM2.5) in diameter by weighting readings from 52 (non-roadside) monitoring stations by the population of the catchment area around the station. The PM2.5 exposure level was then multiplied by the gender and cause specific (Acute Lower Respiratory Infections, Asthma, Circulatory Diseases, Coronary Heart Failure, Chronic Obstructive Pulmonary Disease, Diabetes, Ischemic Heart Disease, Lung Cancer, Low Birth Weight, Respiratory Diseases and Stroke) relative risks and the national age, cause and gender specific mortality (and hospital utilisation which included neuro-degenerative disorders) rates to arrive at the estimated mortality and hospital days attributable to ambient PM2.5 pollution in Israel in 2015. We utilised a WHO spread-sheet model, which was expanded to include relative risks (based on more recent meta-analyses) of sub-sets of other diagnoses in two additional models.

Results

Mortality estimates from the three models were 1609, 1908 and 2253 respectively in addition to 184,000, 348,000 and 542,000 days hospitalisation in general hospitals. Total costs from PM2.5 pollution (including premature burial costs) amounted to $544 million, $1030 million and $1749 million respectively (or 0.18 %, 0.35 % and 0.59 % of GNP).

Conclusions

Subject to the caveat that our estimates were based on a limited number of non-randomly sited stations exposure data. The mortality, morbidity and monetary burden of disease attributable to air pollution from particulate matter in Israel is of sufficient magnitude to warrant the consideration of and prioritisation of technological interventions that are available to reduce air pollution from industrial, power generating and vehicular sources. The accuracy of our burden estimates would be improved if more precise estimates of population exposure were to become available in the future.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization Regional Office for Europe, OECD. Economic cost of the health impact of air pollution in Europe: Clean air, health and wealth. Copenhagen: WHO Regional Office for Europe; 2015. World Health Organization Regional Office for Europe, OECD. Economic cost of the health impact of air pollution in Europe: Clean air, health and wealth. Copenhagen: WHO Regional Office for Europe; 2015.
3.
go back to reference Lopez AD, Rodgers A, Vander Hoorn S, Murray CJ. Comparative Risk Assessment Collaborating Group. Selected major risk factors and global and regional burden of disease. Lancet. 2002;360:1347–60.CrossRefPubMed Lopez AD, Rodgers A, Vander Hoorn S, Murray CJ. Comparative Risk Assessment Collaborating Group. Selected major risk factors and global and regional burden of disease. Lancet. 2002;360:1347–60.CrossRefPubMed
4.
go back to reference Ezzati M, Hoorn SV, Lopez AD, Danaei G, Rodgers A, Mathers CD, Murray CJL. Comparative Quantification of Mortality and Burden of Disease Attributable to Selected Risk Factors. In: Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJL, editors. Global Burden of Disease and Risk Factors. Washington, D.C.: World Bank; 2006. Chapter 4. Ezzati M, Hoorn SV, Lopez AD, Danaei G, Rodgers A, Mathers CD, Murray CJL. Comparative Quantification of Mortality and Burden of Disease Attributable to Selected Risk Factors. In: Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJL, editors. Global Burden of Disease and Risk Factors. Washington, D.C.: World Bank; 2006. Chapter 4.
5.
go back to reference Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60. doi:10.1016/S0140-6736[12]61766-8.CrossRefPubMedPubMedCentral Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60. doi:10.​1016/​S0140-6736[12]61766-8.CrossRefPubMedPubMedCentral
7.
go back to reference Bakar N, Rosenthal G, Gabai N. Estimate of external costs due to air-pollution from transport and industry in Israel. Department of Environmental and Social Sciences. Tel-Hai Academic College: Tel-Hai Acedemic College; 2012. In Hebrew. Bakar N, Rosenthal G, Gabai N. Estimate of external costs due to air-pollution from transport and industry in Israel. Department of Environmental and Social Sciences. Tel-Hai Academic College: Tel-Hai Acedemic College; 2012. In Hebrew.
11.
go back to reference Burnett RT, Pope A, Ezzati M, Olives C, Lim SS, Mehta S, et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect. 2014;122:397–403. http://dx.doi.org/10.1289/ehp.1307049. Accessed 16 Oct 2016. Burnett RT, Pope A, Ezzati M, Olives C, Lim SS, Mehta S, et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect. 2014;122:397–403. http://​dx.​doi.​org/​10.​1289/​ehp.​1307049. Accessed 16 Oct 2016.
13.
go back to reference Wang B, Xu D, Jing Z, Liu D, Yan S, Wang Y. Effect of long-term exposure to air pollution on type 2 diabetes meelitus risk: a systemic review and meta-analysis of cohort studies. Eur J Endocrinol. 2014;171:R173–82.CrossRefPubMed Wang B, Xu D, Jing Z, Liu D, Yan S, Wang Y. Effect of long-term exposure to air pollution on type 2 diabetes meelitus risk: a systemic review and meta-analysis of cohort studies. Eur J Endocrinol. 2014;171:R173–82.CrossRefPubMed
14.
go back to reference Jacquemin B, Siroux V, Sanchez M, Carsin A-e, Shilkowski T, Adam M, et al. Ambient Air Pollution and Adult Asthma Incidence in Six European Cohorts (ESCAPE). Environ Health Perspect. 2015;123:613–21. http://ehp.niehs.nih.gov/1408206/. Accessed 16 Oct 2016. Jacquemin B, Siroux V, Sanchez M, Carsin A-e, Shilkowski T, Adam M, et al. Ambient Air Pollution and Adult Asthma Incidence in Six European Cohorts (ESCAPE). Environ Health Perspect. 2015;123:613–21. http://​ehp.​niehs.​nih.​gov/​1408206/​. Accessed 16 Oct 2016.
15.
go back to reference Zheng X-Y, Ding H, Jiang L-N, Chen S-W, Zheng J-P, Qui M, et al. Association between Air Pollutants and astma emergency Room Visits and Hospital admissions in Time series studies: A Systematic Review and Meta-Analysis. PLoS ONE. 10(9):e0138146. doi:10.1371/journal.pone.0138146. Zheng X-Y, Ding H, Jiang L-N, Chen S-W, Zheng J-P, Qui M, et al. Association between Air Pollutants and astma emergency Room Visits and Hospital admissions in Time series studies: A Systematic Review and Meta-Analysis. PLoS ONE. 10(9):e0138146. doi:10.​1371/​journal.​pone.​0138146.
18.
go back to reference Brookmeyer R, Evans A, Hebert L, Langa M, Heeringa G, Plassman L, et al. National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimers Dement. 2011;7:61–73.CrossRefPubMedPubMedCentral Brookmeyer R, Evans A, Hebert L, Langa M, Heeringa G, Plassman L, et al. National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimers Dement. 2011;7:61–73.CrossRefPubMedPubMedCentral
24.
go back to reference Wang M, Beelen R, Stafoggia M, Raaschou-Nielsen O, Andersen ZJ, Hoffman B, et al. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts: Results from the ESCAPE and TRANSPHORM projects. Environ Int. 2014;66:97–108.CrossRefPubMed Wang M, Beelen R, Stafoggia M, Raaschou-Nielsen O, Andersen ZJ, Hoffman B, et al. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts: Results from the ESCAPE and TRANSPHORM projects. Environ Int. 2014;66:97–108.CrossRefPubMed
25.
go back to reference Pedersen M, Gehring U, Beelen R, Wang M, Giorgis-Allmand L, Nybo A-M, et al. Elemental Constituents of Particulate Matter and newborn’s Size in Eight European Cohorts. Environ Health Perspect. 2016;124:141–50.CrossRefPubMed Pedersen M, Gehring U, Beelen R, Wang M, Giorgis-Allmand L, Nybo A-M, et al. Elemental Constituents of Particulate Matter and newborn’s Size in Eight European Cohorts. Environ Health Perspect. 2016;124:141–50.CrossRefPubMed
26.
go back to reference Jerrett M, Burnett RT, Beckerman BS, et al. Spatial analysis of air pollution and mortality in California. Am J Respir Crit Care Med. 2013;188:593–9.CrossRefPubMed Jerrett M, Burnett RT, Beckerman BS, et al. Spatial analysis of air pollution and mortality in California. Am J Respir Crit Care Med. 2013;188:593–9.CrossRefPubMed
27.
go back to reference Crouse DL, Petera PA, Hystad P, Brook JR, van Donkelaar A, Randall V, et al. Ambient PM2.5, O3, and NO2 Exposures and Associations with Mortality over 16 Years of Follow-up in the Canadian Census Health and Environment Cohort [CanCHEC]. Environ Health Perspect. 2015;123:1180–6.CrossRefPubMedPubMedCentral Crouse DL, Petera PA, Hystad P, Brook JR, van Donkelaar A, Randall V, et al. Ambient PM2.5, O3, and NO2 Exposures and Associations with Mortality over 16 Years of Follow-up in the Canadian Census Health and Environment Cohort [CanCHEC]. Environ Health Perspect. 2015;123:1180–6.CrossRefPubMedPubMedCentral
28.
go back to reference Turner MC, Jerrett M, Pope III CA, Krewski D, Gatspur SM, Diver WR, et al. Long-Term Ozone Exposure and Mortality in a Large prospective Study. In press. Am J Respir Crit Care Med. doi:10.1164/rccm.201508-1633OC. Posted online on 17 Dec 2015. Turner MC, Jerrett M, Pope III CA, Krewski D, Gatspur SM, Diver WR, et al. Long-Term Ozone Exposure and Mortality in a Large prospective Study. In press. Am J Respir Crit Care Med. doi:10.​1164/​rccm.​201508-1633OC. Posted online on 17 Dec 2015.
29.
go back to reference Yim SHL, Barrett SRH. Public health impacts of consumption emissions in the United Kingdom. Environ Sci Technol. 2012;46:4291–6.CrossRefPubMed Yim SHL, Barrett SRH. Public health impacts of consumption emissions in the United Kingdom. Environ Sci Technol. 2012;46:4291–6.CrossRefPubMed
30.
go back to reference Ginsberg GM, Seeri A, Fletcher E, Koutik D, Keresente E, Shemer Y. Mortality and morbidity from vehicular emissions in Tel-Aviv. World Transp Policy Prac. 1998;4:27–31. Ginsberg GM, Seeri A, Fletcher E, Koutik D, Keresente E, Shemer Y. Mortality and morbidity from vehicular emissions in Tel-Aviv. World Transp Policy Prac. 1998;4:27–31.
31.
go back to reference Ginsberg GM, Seeri A, Fletcher E, Tene M, Karsente E, Shemer Y. Mortality reductions as a result of changing to alternative powered vehicles in Tel-Aviv-Jafo. World Transp Policy Prac. 1998;4:4–9. Ginsberg GM, Seeri A, Fletcher E, Tene M, Karsente E, Shemer Y. Mortality reductions as a result of changing to alternative powered vehicles in Tel-Aviv-Jafo. World Transp Policy Prac. 1998;4:4–9.
32.
go back to reference Karagulian F, Belis C, Dor C, Pruss-Ustun A, Bonjour S, Adair-Rohani H, et al. Contributions to cities’ ambient particulate matter [PM]: A systematic review of local source contributions at global level. Atmos Environ. 2015;120:475–83.CrossRef Karagulian F, Belis C, Dor C, Pruss-Ustun A, Bonjour S, Adair-Rohani H, et al. Contributions to cities’ ambient particulate matter [PM]: A systematic review of local source contributions at global level. Atmos Environ. 2015;120:475–83.CrossRef
33.
go back to reference Erel Y, Dayan U, Rabi R, Rudich Y, Stein M. Trans-boundary transport of pollutants by atmospheric mineral dust. Environ Sci Technol. 2006;40:2996–3005.CrossRefPubMed Erel Y, Dayan U, Rabi R, Rudich Y, Stein M. Trans-boundary transport of pollutants by atmospheric mineral dust. Environ Sci Technol. 2006;40:2996–3005.CrossRefPubMed
34.
go back to reference Dayan U, Erel Y, Shpund J, Kordova L, Wanger A, Schauer JJ. The impact of local sources and meteorological factors on nitrogen oxide and particulate matter concentrations: A case study of the Day of Atonement in Israel. Atmos Environ. 2011;2011:3325–32.CrossRef Dayan U, Erel Y, Shpund J, Kordova L, Wanger A, Schauer JJ. The impact of local sources and meteorological factors on nitrogen oxide and particulate matter concentrations: A case study of the Day of Atonement in Israel. Atmos Environ. 2011;2011:3325–32.CrossRef
35.
go back to reference Levy I. A national day with near zero emissions and its effect on primary and secondary pollutants. Atmospheric Environment. 2013:77;202–12. Levy I. A national day with near zero emissions and its effect on primary and secondary pollutants. Atmospheric Environment. 2013:77;202–12.
36.
go back to reference World Health Organization. Reducing Global Health Risks through mitigation of Short-Lived Climate Pollutants. Scoping Report for Policy-makers. Scovronick N, editor. Switzerland; 2015. ISBN: 978 92 4 156508 0. World Health Organization. Reducing Global Health Risks through mitigation of Short-Lived Climate Pollutants. Scoping Report for Policy-makers. Scovronick N, editor. Switzerland; 2015. ISBN: 978 92 4 156508 0.
Metadata
Title
Mortality, hospital days and expenditures attributable to ambient air pollution from particulate matter in Israel
Authors
Gary M. Ginsberg
Ehud Kaliner
Itamar Grotto
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Israel Journal of Health Policy Research / Issue 1/2016
Electronic ISSN: 2045-4015
DOI
https://doi.org/10.1186/s13584-016-0110-7

Other articles of this Issue 1/2016

Israel Journal of Health Policy Research 1/2016 Go to the issue