Skip to main content
Top
Published in: EJNMMI Research 1/2021

Open Access 01-12-2021 | Positron Emission Tomography | Original research

Conscious rat PET imaging with soft immobilization for quantitation of brain functions: comprehensive assessment of anesthesia effects on cerebral blood flow and metabolism

Authors: Chie Suzuki, Mutsumi Kosugi, Yasuhiro Magata

Published in: EJNMMI Research | Issue 1/2021

Login to get access

Abstract

Background

Animal brain functions evaluated by in vivo imaging under anesthesia can be affected by anesthetic agents, resulting in incorrect assessment of physiological brain function. We therefore performed dynamic positron emission tomography (PET) imaging of conscious rats using recently reported soft immobilization to validate the efficacy of the immobilization for brain function assessments. We also determined the effects of six anesthetic agents—a mixed anesthetic agent (MMB), ketamine + xylazine (KX), chloral hydrate (Chloral), pentobarbital (PTB), propofol (PF), and isoflurane (IFL)—on brain function by comparison with conscious rats.

Results

The immobilization enabled 45-min dynamic [18F]FDG-PET acquisition with arterial blood sampling using conscious rats without the use of special techniques or invasive surgery. The spatial resolution and quantitativity of [18F]FDG-PET were not significantly lower for conscious rats than for anesthetized rats. While MMB, Chloral, PTB, and PF showed ubiquitous reduction in the cerebral metabolic rates of glucose (CMRglu) in brain regions, KX and IFL showed higher reductions in cerebellum and interbrain, and cerebellum, respectively. Cerebral blood flow (CBF) was reduced by MMB, KX, PTB, and PF; increased by IFL; and unaltered by Chloral. The magnitude of decrease in CMRglu and CBF for MMB were not larger than for other five anesthetic agents, although blood glucose levels and body temperature can be easily affected by MMB.

Conclusion

The six anesthetic agents induced various effects on CMRglu and CBF. The immobilization technique presented here is a promising tool for noninvasive brain functional imaging using conscious rats to avoid the effects of anesthetic agents.
Appendix
Available only for authorised users
Literature
1.
go back to reference Matsumura A, Mizokawa S, Tanaka M, Wada Y, Nozaki S, Nakamura F, et al. Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography. Neuroimage. 2003;20:2040–50.CrossRef Matsumura A, Mizokawa S, Tanaka M, Wada Y, Nozaki S, Nakamura F, et al. Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography. Neuroimage. 2003;20:2040–50.CrossRef
11.
go back to reference Kusanagi S, Kimura K, Hirakane M, Iwamoto S, Araki R, Yoshinaga S, et al. Development of an MRI method for awake mouse imaging using soft immobilization and a fast MR acquisition procedure. Proc Intl Soc Mag Reson Med. 2014;22:1298. Kusanagi S, Kimura K, Hirakane M, Iwamoto S, Araki R, Yoshinaga S, et al. Development of an MRI method for awake mouse imaging using soft immobilization and a fast MR acquisition procedure. Proc Intl Soc Mag Reson Med. 2014;22:1298.
14.
go back to reference Magata Y, Saji H, Choi SR, Tajima K, Takagaki T, Sasayama S, et al. Noninvasive measurement of cerebral blood flow and glucose metabolic rate in the rat with high-resolution animal positron emission tomography (PET): a novel in vivo approach for assessing drug action in the brains of small animals. Biol Pharm Bul. 1995;18:753–6. https://doi.org/10.1248/bpb.18.753.CrossRef Magata Y, Saji H, Choi SR, Tajima K, Takagaki T, Sasayama S, et al. Noninvasive measurement of cerebral blood flow and glucose metabolic rate in the rat with high-resolution animal positron emission tomography (PET): a novel in vivo approach for assessing drug action in the brains of small animals. Biol Pharm Bul. 1995;18:753–6. https://​doi.​org/​10.​1248/​bpb.​18.​753.CrossRef
17.
go back to reference Di Rocco RJ, Silva DA, Kuczynski BL, Narra RK, Ramalingam K, Jurisson S, et al. The single-pass cerebral extraction and capillary permeability-surface area product of several putative cerebral blood flow imaging agents. J Nucl Med. 1993;34:641–8.PubMed Di Rocco RJ, Silva DA, Kuczynski BL, Narra RK, Ramalingam K, Jurisson S, et al. The single-pass cerebral extraction and capillary permeability-surface area product of several putative cerebral blood flow imaging agents. J Nucl Med. 1993;34:641–8.PubMed
18.
go back to reference Nagata T, Saji H, Nishizawa S, Yonekura Y, Yamamoto I, Iida Y, et al. [125I]iomazenil binding in the brains of spontaneously epileptic rats: an ex vivo quantitative autoradiographic study. Nucl Med Biol. 1995;22:445–9.CrossRef Nagata T, Saji H, Nishizawa S, Yonekura Y, Yamamoto I, Iida Y, et al. [125I]iomazenil binding in the brains of spontaneously epileptic rats: an ex vivo quantitative autoradiographic study. Nucl Med Biol. 1995;22:445–9.CrossRef
19.
go back to reference Siswanto H, Hau J, Carlsson HE, Goldkuhl R, Abelson KS. Corticosterone concentrations in blood and excretion in faeces after ACTH administration in male Sprague-Dawley rats. vivo. 2008;22:435–40. Siswanto H, Hau J, Carlsson HE, Goldkuhl R, Abelson KS. Corticosterone concentrations in blood and excretion in faeces after ACTH administration in male Sprague-Dawley rats. vivo. 2008;22:435–40.
30.
go back to reference Lee KH, Ko BH, Paik JY, Jung KH, Choe YS, Choi Y, et al. Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. J Nucl Med. 2005;46:1531–6.PubMed Lee KH, Ko BH, Paik JY, Jung KH, Choe YS, Choi Y, et al. Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. J Nucl Med. 2005;46:1531–6.PubMed
Metadata
Title
Conscious rat PET imaging with soft immobilization for quantitation of brain functions: comprehensive assessment of anesthesia effects on cerebral blood flow and metabolism
Authors
Chie Suzuki
Mutsumi Kosugi
Yasuhiro Magata
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2021
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-021-00787-6

Other articles of this Issue 1/2021

EJNMMI Research 1/2021 Go to the issue