Skip to main content
Top
Published in: EJNMMI Research 1/2021

Open Access 01-12-2021 | Metastasis | Original research

Detection and therapy of neuroblastoma minimal residual disease using [64/67Cu]Cu-SARTATE in a preclinical model of hepatic metastases

Authors: Jason L. J. Dearling, Ellen M. van Dam, Matthew J. Harris, Alan B. Packard

Published in: EJNMMI Research | Issue 1/2021

Login to get access

Abstract

Background

A major challenge to the long-term success of neuroblastoma therapy is widespread metastases that survive initial therapy as minimal residual disease (MRD). The SSTR2 receptor is expressed by most neuroblastoma tumors making it an attractive target for molecularly targeted radionuclide therapy. SARTATE consists of octreotate, which targets the SSTR2 receptor, conjugated to MeCOSar, a bifunctional chelator with high affinity for copper. Cu-SARTATE offers the potential to both detect and treat neuroblastoma MRD by using [64Cu]Cu-SARTATE to detect and monitor the disease and [67Cu]Cu-SARTATE as the companion therapeutic agent. In the present study, we tested this theranostic pair in a preclinical model of neuroblastoma MRD. An intrahepatic model of metastatic neuroblastoma was established using IMR32 cells in nude mice. The biodistribution of [64Cu]Cu-SARTATE was measured using small-animal PET and ex vivo tissue analysis. Survival studies were carried out using the same model: mice (6–8 mice/group) were given single doses of saline, or 9.25 MBq (250 µCi), or 18.5 MBq (500 µCi) of [67Cu]Cu-SARTATE at either 2 or 4 weeks after tumor cell inoculation.

Results

PET imaging and ex vivo biodistribution confirmed tumor uptake of [64Cu]Cu-SARTATE and rapid clearance from other tissues. The major clearance tissues were the kidneys (15.6 ± 5.8% IA/g at 24 h post-injection, 11.5 ± 2.8% IA/g at 48 h, n = 3/4). Autoradiography and histological analysis confirmed [64Cu]Cu-SARTATE uptake in viable, SSTR2-positive tumor regions with mean tumor uptakes of 14.1–25.0% IA/g at 24 h. [67Cu]Cu-SARTATE therapy was effective when started 2 weeks after tumor cell inoculation, extending survival by an average of 13 days (30%) compared with the untreated group (mean survival of control group 43.0 ± 8.1 days vs. 55.6 ± 9.1 days for the treated group; p = 0.012). No significant therapeutic effect was observed when [67Cu]Cu-SARTATE was started 4 weeks after tumor cell inoculation, when the tumors would have been larger (control group 14.6 ± 8.5 days; 9.25 MBq group 9.5 ± 1.6 days; 18.5 MBq group 15.6 ± 4.1 days; p = 0.064).

Conclusions

Clinical experiences of peptide-receptor radionuclide therapy for metastatic disease have been encouraging. This study demonstrates the potential for a theranostic approach using [64/67Cu]Cu-SARTATE for the detection and treatment of SSTR2-positive neuroblastoma MRD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83–103.PubMedCrossRef Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83–103.PubMedCrossRef
2.
go back to reference Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003;3(3):203–16.PubMedCrossRef Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003;3(3):203–16.PubMedCrossRef
3.
go back to reference Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children’s oncology group study. J Clin Oncol. 2009;27(7):1007–13.PubMedPubMedCentralCrossRef Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children’s oncology group study. J Clin Oncol. 2009;27(7):1007–13.PubMedPubMedCentralCrossRef
4.
go back to reference Seeger RC, Reynolds CP, Gallego R, Stram DO, Gerbing RB, Matthay KK. Quantitative tumor cell content of bone marrow and blood as a predictor of outcome in stage IV neuroblastoma: a Children’s Cancer Group Study. J Clin Oncol. 2000;18(24):4067–76.PubMedCrossRef Seeger RC, Reynolds CP, Gallego R, Stram DO, Gerbing RB, Matthay KK. Quantitative tumor cell content of bone marrow and blood as a predictor of outcome in stage IV neuroblastoma: a Children’s Cancer Group Study. J Clin Oncol. 2000;18(24):4067–76.PubMedCrossRef
5.
go back to reference Wilson JS, Gains JE, Moroz V, Wheatley K, Gaze MN. A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma. Eur J Cancer. 2014;50(4):801–15.PubMedCrossRef Wilson JS, Gains JE, Moroz V, Wheatley K, Gaze MN. A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma. Eur J Cancer. 2014;50(4):801–15.PubMedCrossRef
6.
go back to reference Kushner BH. Neuroblastoma: a disease requiring a multitude of imaging studies. J Nucl Med. 2004;45(7):1172–88.PubMed Kushner BH. Neuroblastoma: a disease requiring a multitude of imaging studies. J Nucl Med. 2004;45(7):1172–88.PubMed
7.
go back to reference Howman-Giles R, Shaw PJ, Uren RF, Chung DK. Neuroblastoma and other neuroendocrine tumors. Semin Nucl Med. 2007;37(4):286–302.PubMedCrossRef Howman-Giles R, Shaw PJ, Uren RF, Chung DK. Neuroblastoma and other neuroendocrine tumors. Semin Nucl Med. 2007;37(4):286–302.PubMedCrossRef
8.
go back to reference Reubi JC, Schaer JC, Waser B, Mengod G. Expression and localization of somatostatin receptor SSTR1, SSTR2, and SSTR3 messenger RNAs in primary human tumors using in situ hybridization. Cancer Res. 1994;54(13):3455–9.PubMed Reubi JC, Schaer JC, Waser B, Mengod G. Expression and localization of somatostatin receptor SSTR1, SSTR2, and SSTR3 messenger RNAs in primary human tumors using in situ hybridization. Cancer Res. 1994;54(13):3455–9.PubMed
9.
go back to reference Georgantzi K, Tsolakis AV, Stridsberg M, Jakobson A, Christofferson R, Janson ET. Differentiated expression of somatostatin receptor subtypes in experimental models and clinical neuroblastoma. Pediatr Blood Cancer. 2011;56(4):584–9.PubMedCrossRef Georgantzi K, Tsolakis AV, Stridsberg M, Jakobson A, Christofferson R, Janson ET. Differentiated expression of somatostatin receptor subtypes in experimental models and clinical neuroblastoma. Pediatr Blood Cancer. 2011;56(4):584–9.PubMedCrossRef
10.
go back to reference Alexander N, Marrano P, Thorner P, Naranjo A, Van Ryn C, Martinez D, et al. Prevalence and clinical correlations of somatostatin receptor-2 (SSTR2) expression in neuroblastoma. J Pediatr Hematol Oncol. 2019;41(3):222–7.PubMedPubMedCentralCrossRef Alexander N, Marrano P, Thorner P, Naranjo A, Van Ryn C, Martinez D, et al. Prevalence and clinical correlations of somatostatin receptor-2 (SSTR2) expression in neuroblastoma. J Pediatr Hematol Oncol. 2019;41(3):222–7.PubMedPubMedCentralCrossRef
11.
go back to reference Moertel CL, Reubi JC, Scheithauer BS, Schaid DJ, Kvols LK. Expression of somatostatin receptors in childhood neuroblastoma. Am J Clin Pathol. 1994;102(6):752–6.PubMedCrossRef Moertel CL, Reubi JC, Scheithauer BS, Schaid DJ, Kvols LK. Expression of somatostatin receptors in childhood neuroblastoma. Am J Clin Pathol. 1994;102(6):752–6.PubMedCrossRef
12.
go back to reference Albers AR, O’Dorisio MS, Balster DA, Caprara M, Gosh P, Chen F, et al. Somatostatin receptor gene expression in neuroblastoma. Regul Pept. 2000;88(1–3):61–73.PubMedCrossRef Albers AR, O’Dorisio MS, Balster DA, Caprara M, Gosh P, Chen F, et al. Somatostatin receptor gene expression in neuroblastoma. Regul Pept. 2000;88(1–3):61–73.PubMedCrossRef
13.
go back to reference Pauwels E, Cleeren F, Bormans G, Deroose CM. Somatostatin receptor PET ligands—the next generation for clinical practice. Am J Nucl Med Mol Imaging. 2018;8(5):311–31.PubMedPubMedCentral Pauwels E, Cleeren F, Bormans G, Deroose CM. Somatostatin receptor PET ligands—the next generation for clinical practice. Am J Nucl Med Mol Imaging. 2018;8(5):311–31.PubMedPubMedCentral
14.
go back to reference Fani M, Nicolas GP, Wild D. Somatostatin receptor antagonists for imaging and therapy. J Nucl Med. 2017;58(Suppl 2):61S-S66.PubMedCrossRef Fani M, Nicolas GP, Wild D. Somatostatin receptor antagonists for imaging and therapy. J Nucl Med. 2017;58(Suppl 2):61S-S66.PubMedCrossRef
15.
go back to reference Stueven AK, Kayser A, Wetz C, Amthauer H, Wree A, Tacke F, et al. Somatostatin analogues in the treatment of neuroendocrine tumors: past, present and future. Int J Mol Sci. 2019;20(12):3049.PubMedCentralCrossRef Stueven AK, Kayser A, Wetz C, Amthauer H, Wree A, Tacke F, et al. Somatostatin analogues in the treatment of neuroendocrine tumors: past, present and future. Int J Mol Sci. 2019;20(12):3049.PubMedCentralCrossRef
16.
go back to reference Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of (177)Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.PubMedPubMedCentralCrossRef Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of (177)Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.PubMedPubMedCentralCrossRef
17.
go back to reference Kong G, Hofman MS, Murray WK, Wilson S, Wood P, Downie P, et al. Initial experience with gallium-68 DOTA-octreotate PET/CT and peptide receptor radionuclide therapy for pediatric patients with refractory metastatic neuroblastoma. J Pediatr Hematol Oncol. 2016;38(2):87–96.PubMedCrossRef Kong G, Hofman MS, Murray WK, Wilson S, Wood P, Downie P, et al. Initial experience with gallium-68 DOTA-octreotate PET/CT and peptide receptor radionuclide therapy for pediatric patients with refractory metastatic neuroblastoma. J Pediatr Hematol Oncol. 2016;38(2):87–96.PubMedCrossRef
18.
go back to reference Gains JE, Bomanji JB, Fersht NL, Sullivan T, D’Souza D, Sullivan KP, et al. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med. 2011;52(7):1041–7.PubMedCrossRef Gains JE, Bomanji JB, Fersht NL, Sullivan T, D’Souza D, Sullivan KP, et al. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med. 2011;52(7):1041–7.PubMedCrossRef
19.
go back to reference Gains JE, Moroz V, Aldridge MD, Wan S, Wheatley K, Laidler J, et al. A phase IIa trial of molecular radiotherapy with 177-lutetium DOTATATE in children with primary refractory or relapsed high-risk neuroblastoma. Eur J Nucl Med Mol Imaging. 2020;47(10):2348–57.PubMedCrossRef Gains JE, Moroz V, Aldridge MD, Wan S, Wheatley K, Laidler J, et al. A phase IIa trial of molecular radiotherapy with 177-lutetium DOTATATE in children with primary refractory or relapsed high-risk neuroblastoma. Eur J Nucl Med Mol Imaging. 2020;47(10):2348–57.PubMedCrossRef
20.
go back to reference Alexander N, Vali R, Ahmadzadehfar H, Shammas A, Baruchel S. Review: The role of radiolabeled DOTA-conjugated peptides for imaging and treatment of childhood neuroblastoma. Curr Radiopharm. 2018;11(1):14–21.PubMedCrossRef Alexander N, Vali R, Ahmadzadehfar H, Shammas A, Baruchel S. Review: The role of radiolabeled DOTA-conjugated peptides for imaging and treatment of childhood neuroblastoma. Curr Radiopharm. 2018;11(1):14–21.PubMedCrossRef
21.
go back to reference Johnbeck CB, Knigge U, Loft A, Berthelsen AK, Mortensen J, Oturai P, et al. Head-to-head comparison of (64)Cu-DOTATATE and (68)Ga-DOTATOC PET/CT: a prospective study of 59 patients with neuroendocrine tumors. J Nucl Med. 2017;58(3):451–7.PubMedCrossRef Johnbeck CB, Knigge U, Loft A, Berthelsen AK, Mortensen J, Oturai P, et al. Head-to-head comparison of (64)Cu-DOTATATE and (68)Ga-DOTATOC PET/CT: a prospective study of 59 patients with neuroendocrine tumors. J Nucl Med. 2017;58(3):451–7.PubMedCrossRef
22.
go back to reference Pfeifer A, Knigge U, Mortensen J, Oturai P, Berthelsen AK, Loft A, et al. Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study. J Nucl Med. 2012;53(8):1207–15.PubMedCrossRef Pfeifer A, Knigge U, Mortensen J, Oturai P, Berthelsen AK, Loft A, et al. Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study. J Nucl Med. 2012;53(8):1207–15.PubMedCrossRef
23.
go back to reference Bunka M, Muller C, Vermeulen C, Haller S, Turler A, Schibli R, et al. Imaging quality of (44)Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET. Appl Radiat Isotop. 2016;110:129–33.CrossRef Bunka M, Muller C, Vermeulen C, Haller S, Turler A, Schibli R, et al. Imaging quality of (44)Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET. Appl Radiat Isotop. 2016;110:129–33.CrossRef
24.
go back to reference Maheshwari V, Dearling JLJ, Treves ST, Packard AB. Measurement of the rate of copper(II) exchange for 64Cu complexes of bifunctional chelators. Inorg Chim Acta. 2012;393:318–23.CrossRef Maheshwari V, Dearling JLJ, Treves ST, Packard AB. Measurement of the rate of copper(II) exchange for 64Cu complexes of bifunctional chelators. Inorg Chim Acta. 2012;393:318–23.CrossRef
25.
go back to reference Paterson BM, Roselt P, Denoyer D, Cullinane C, Binns D, Noonan W, et al. PET imaging of tumours with a 64Cu labeled macrobicyclic cage amine ligand tethered to Tyr3-octreotate. Dalton Trans. 2014;43(3):1386–96.PubMedCrossRef Paterson BM, Roselt P, Denoyer D, Cullinane C, Binns D, Noonan W, et al. PET imaging of tumours with a 64Cu labeled macrobicyclic cage amine ligand tethered to Tyr3-octreotate. Dalton Trans. 2014;43(3):1386–96.PubMedCrossRef
26.
go back to reference Di Bartolo N, Sargeson AM, Smith SV. New 64Cu PET imaging agents for personalised medicine and drug development using the hexa-aza cage. SarAr Org Biomol Chem. 2006;4(17):3350–7.PubMedCrossRef Di Bartolo N, Sargeson AM, Smith SV. New 64Cu PET imaging agents for personalised medicine and drug development using the hexa-aza cage. SarAr Org Biomol Chem. 2006;4(17):3350–7.PubMedCrossRef
27.
go back to reference Hicks RJ, Jackson P, Kong G, Ware RE, Hofman MS, Pattison DA, et al. (64)Cu-SARTATE PET imaging of patients with neuroendocrine tumors demonstrates high tumor uptake and retention, potentially allowing prospective dosimetry for peptide receptor radionuclide therapy. J Nucl Med. 2019;60(6):777–85.PubMedPubMedCentralCrossRef Hicks RJ, Jackson P, Kong G, Ware RE, Hofman MS, Pattison DA, et al. (64)Cu-SARTATE PET imaging of patients with neuroendocrine tumors demonstrates high tumor uptake and retention, potentially allowing prospective dosimetry for peptide receptor radionuclide therapy. J Nucl Med. 2019;60(6):777–85.PubMedPubMedCentralCrossRef
28.
go back to reference Cullinane C, Jeffery CM, Roselt PD, van Dam EM, Jackson S, Kuan K, et al. Peptide receptor radionuclide therapy with (67)Cu-CuSarTATE is highly efficacious against a somatostatin positive neuroendocrine tumor model. J Nucl Med. 2020;61:1800–5.PubMedCrossRef Cullinane C, Jeffery CM, Roselt PD, van Dam EM, Jackson S, Kuan K, et al. Peptide receptor radionuclide therapy with (67)Cu-CuSarTATE is highly efficacious against a somatostatin positive neuroendocrine tumor model. J Nucl Med. 2020;61:1800–5.PubMedCrossRef
29.
go back to reference ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2020 August 18. Identifier NCT04023331, 67Cu-SARTATETM peptide receptor radionuclide therapy administered to pediatric patients with high-risk neuroblastoma. First posted 2019 July 17. Cited 2021 February 8. [about 1 screen]. https://www.clinicaltrials.gov/ct2/show/NCT04023331. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2020 August 18. Identifier NCT04023331, 67Cu-SARTATETM peptide receptor radionuclide therapy administered to pediatric patients with high-risk neuroblastoma. First posted 2019 July 17. Cited 2021 February 8. [about 1 screen]. https://​www.​clinicaltrials.​gov/​ct2/​show/​NCT04023331.
30.
go back to reference Kume M, Carey PC, Gaehle G, Madrid E, Voller T, Margenau W, et al. A semi-automated system for the routine production of copper-64. Appl Radiat Isotop. 2012;70(8):1803–6.CrossRef Kume M, Carey PC, Gaehle G, Madrid E, Voller T, Margenau W, et al. A semi-automated system for the routine production of copper-64. Appl Radiat Isotop. 2012;70(8):1803–6.CrossRef
31.
go back to reference Tumilowicz JJ, Nichols WW, Cholon JJ, Greene AE. Definition of a continuous human cell line derived from neuroblastoma. Cancer Res. 1970;30(8):2110–8.PubMed Tumilowicz JJ, Nichols WW, Cholon JJ, Greene AE. Definition of a continuous human cell line derived from neuroblastoma. Cancer Res. 1970;30(8):2110–8.PubMed
32.
go back to reference Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging. 2003;2(3):131–7.PubMedCrossRef Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging. 2003;2(3):131–7.PubMedCrossRef
33.
go back to reference Mies G, Niebuhr I, Hossmann KA. Simultaneous measurement of blood flow and glucose metabolism by autoradiographic techniques. Stroke J Cereb Circ. 1981;12(5):581–8.CrossRef Mies G, Niebuhr I, Hossmann KA. Simultaneous measurement of blood flow and glucose metabolism by autoradiographic techniques. Stroke J Cereb Circ. 1981;12(5):581–8.CrossRef
34.
go back to reference Weckbecker G, Tolcsvai L, Liu R, Bruns C. Preclinical studies on the anticancer activity of the somatostatin analogue octreotide (SMS 201-995). Metab Clin Exp. 1992;41(9 Suppl 2):99–103.PubMedCrossRef Weckbecker G, Tolcsvai L, Liu R, Bruns C. Preclinical studies on the anticancer activity of the somatostatin analogue octreotide (SMS 201-995). Metab Clin Exp. 1992;41(9 Suppl 2):99–103.PubMedCrossRef
35.
go back to reference Weckbecker G, Tolcsvai L, Liu R, Bruns C. Preclinical studies on the anticancer activity of the somatostatin analog octreotide (SMS 201-995). Digestion. 1993;54(Suppl 1):98–103.PubMedCrossRef Weckbecker G, Tolcsvai L, Liu R, Bruns C. Preclinical studies on the anticancer activity of the somatostatin analog octreotide (SMS 201-995). Digestion. 1993;54(Suppl 1):98–103.PubMedCrossRef
36.
go back to reference Ullrich M, Bergmann R, Peitzsch M, Zenker EF, Cartellieri M, Bachmann M, et al. Multimodal somatostatin receptor theranostics using [(64)Cu]Cu-/[(177)Lu]Lu-DOTA-(Tyr(3))octreotate and AN-238 in a mouse pheochromocytoma model. Theranostics. 2016;6(5):650–65.PubMedPubMedCentralCrossRef Ullrich M, Bergmann R, Peitzsch M, Zenker EF, Cartellieri M, Bachmann M, et al. Multimodal somatostatin receptor theranostics using [(64)Cu]Cu-/[(177)Lu]Lu-DOTA-(Tyr(3))octreotate and AN-238 in a mouse pheochromocytoma model. Theranostics. 2016;6(5):650–65.PubMedPubMedCentralCrossRef
37.
go back to reference Zhang L, Vines DC, Scollard DA, McKee T, Komal T, Ganguly M, et al. Correlation of somatostatin receptor-2 expression with gallium-68-DOTA-TATE uptake in neuroblastoma xenograft models. Contrast Media Mol Imaging. 2017;2017:9481276.PubMedPubMedCentral Zhang L, Vines DC, Scollard DA, McKee T, Komal T, Ganguly M, et al. Correlation of somatostatin receptor-2 expression with gallium-68-DOTA-TATE uptake in neuroblastoma xenograft models. Contrast Media Mol Imaging. 2017;2017:9481276.PubMedPubMedCentral
38.
go back to reference Schmitt A, Bernhardt P, Nilsson O, Ahlman H, Kolby L, Schmitt J, et al. Biodistribution and dosimetry of 177Lu-labeled [DOTA0, Tyr3]octreotate in male nude mice with human small cell lung cancer. Cancer Biother Radiopharm. 2003;18(4):593–9.PubMedCrossRef Schmitt A, Bernhardt P, Nilsson O, Ahlman H, Kolby L, Schmitt J, et al. Biodistribution and dosimetry of 177Lu-labeled [DOTA0, Tyr3]octreotate in male nude mice with human small cell lung cancer. Cancer Biother Radiopharm. 2003;18(4):593–9.PubMedCrossRef
39.
go back to reference Bison SM, Haeck JC, Bol K, Koelewijn SJ, Groen HC, Melis M, et al. Optimization of combined temozolomide and peptide receptor radionuclide therapy (PRRT) in mice after multimodality molecular imaging studies. EJNMMI Res. 2015;5(1):62.PubMedPubMedCentralCrossRef Bison SM, Haeck JC, Bol K, Koelewijn SJ, Groen HC, Melis M, et al. Optimization of combined temozolomide and peptide receptor radionuclide therapy (PRRT) in mice after multimodality molecular imaging studies. EJNMMI Res. 2015;5(1):62.PubMedPubMedCentralCrossRef
40.
go back to reference Lewin J, Cullinane C, Akhurst T, Waldeck K, Watkins DN, Rao A, et al. Peptide receptor chemoradionuclide therapy in small cell carcinoma: from bench to bedside. Eur J Nucl Med Mol Imaging. 2015;42(1):25–32.PubMedCrossRef Lewin J, Cullinane C, Akhurst T, Waldeck K, Watkins DN, Rao A, et al. Peptide receptor chemoradionuclide therapy in small cell carcinoma: from bench to bedside. Eur J Nucl Med Mol Imaging. 2015;42(1):25–32.PubMedCrossRef
41.
go back to reference Strosberg J, Kunz PL, Hendifar A, Yao J, Bushnell D, Kulke MH, et al. Impact of liver tumour burden, alkaline phosphatase elevation, and target lesion size on treatment outcomes with (177)Lu-Dotatate: an analysis of the NETTER-1 study. Eur J Nucl Med Mol Imaging. 2020;47:2372–82.PubMedPubMedCentralCrossRef Strosberg J, Kunz PL, Hendifar A, Yao J, Bushnell D, Kulke MH, et al. Impact of liver tumour burden, alkaline phosphatase elevation, and target lesion size on treatment outcomes with (177)Lu-Dotatate: an analysis of the NETTER-1 study. Eur J Nucl Med Mol Imaging. 2020;47:2372–82.PubMedPubMedCentralCrossRef
42.
go back to reference Bernhardt P, Ahlman H, Forssell-Aronsson E. Model of metastatic growth valuable for radionuclide therapy. Med Phys. 2003;30(12):3227–32.PubMedCrossRef Bernhardt P, Ahlman H, Forssell-Aronsson E. Model of metastatic growth valuable for radionuclide therapy. Med Phys. 2003;30(12):3227–32.PubMedCrossRef
43.
go back to reference Emmett L, Willowson K, Violet J, Shin J, Blanksby A, Lee J. Lutetium (177) PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J Med Radiat Sci. 2017;64(1):52–60.PubMedPubMedCentralCrossRef Emmett L, Willowson K, Violet J, Shin J, Blanksby A, Lee J. Lutetium (177) PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J Med Radiat Sci. 2017;64(1):52–60.PubMedPubMedCentralCrossRef
Metadata
Title
Detection and therapy of neuroblastoma minimal residual disease using [64/67Cu]Cu-SARTATE in a preclinical model of hepatic metastases
Authors
Jason L. J. Dearling
Ellen M. van Dam
Matthew J. Harris
Alan B. Packard
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2021
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-021-00763-0

Other articles of this Issue 1/2021

EJNMMI Research 1/2021 Go to the issue