Skip to main content
Top
Published in: EJNMMI Research 1/2020

Open Access 01-12-2020 | Original research

Design, synthesis, and biological evaluation of a multifunctional neuropeptide-Y conjugate for selective nuclear delivery of radiolanthanides

Authors: Adrien Chastel, Dennis J. Worm, Isabel D. Alves, Delphine Vimont, Melina Petrel, Samantha Fernandez, Philippe Garrigue, Philippe Fernandez, Elif Hindié, Annette G. Beck-Sickinger, Clément Morgat

Published in: EJNMMI Research | Issue 1/2020

Login to get access

Abstract

Background

Targeting G protein-coupled receptors on the surface of cancer cells with peptide ligands is a promising concept for the selective tumor delivery of therapeutically active cargos, including radiometals for targeted radionuclide therapy (TRT). Recently, the radiolanthanide terbium-161 (161Tb) gained significant interest for TRT application, since it decays with medium-energy β-radiation but also emits a significant amount of conversion and Auger electrons with short tissue penetration range. The therapeutic efficiency of radiometals emitting Auger electrons, like 161Tb, can therefore be highly boosted by an additional subcellular delivery into the nucleus, in order to facilitate maximum dose deposition to the DNA. In this study, we describe the design of a multifunctional, radiolabeled neuropeptide-Y (NPY) conjugate, to address radiolanthanides to the nucleus of cells naturally overexpressing the human Y1 receptor (hY1R).
By using solid-phase peptide synthesis, the hY1R-preferring [F7,P34]-NPY was modified with a fatty acid, a cathepsin B-cleavable linker, followed by a nuclear localization sequence (NLS), and a DOTA chelator (compound pb12). In this proof-of-concept study, labeling was performed with either native terbium-159 (natTb), as surrogate for 161Tb, or with indium-111 (111In).

Results

[natTb]Tb-pb12 showed a preserved high binding affinity to endogenous hY1R on MCF-7 cells and was able to induce receptor activation and internalization similar to the hY1R-preferring [F7,P34]-NPY. Specific internalization of the 111In-labeled conjugate into MCF-7 cells was observed, and importantly, time-dependent nuclear uptake of 111In was demonstrated. Study of metabolic stability showed that the peptide is insufficiently stable in human plasma. This was confirmed by injection of [111In]In-pb12 in nude mice bearing MCF-7 xenograft which showed specific uptake only at very early time point.

Conclusion

The multifunctional NPY conjugate with a releasable DOTA-NLS unit represents a promising concept for enhanced TRT with Auger electron-emitting radiolanthanides. Our research is now focusing on improving the reported concept with respect to the poor plasmatic stability of this promising radiopeptide.
Appendix
Available only for authorised users
Literature
1.
go back to reference Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-DOTATATE for midgut neuroendocrine tumors. N Engl J Med. 2017;376:125–35.CrossRef Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-DOTATATE for midgut neuroendocrine tumors. N Engl J Med. 2017;376:125–35.CrossRef
2.
go back to reference Hofman MS, Violet J, Hicks RJ, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018;19:825–33.CrossRef Hofman MS, Violet J, Hicks RJ, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018;19:825–33.CrossRef
3.
go back to reference Haller S, Pellegrini G, Vermeulen C, et al. Contribution of auger/conversion electrons to renal side effects after radionuclide therapy: preclinical comparison of 161Tb-folate and 177Lu-folate. EJNMMI Res. 2016;6. Haller S, Pellegrini G, Vermeulen C, et al. Contribution of auger/conversion electrons to renal side effects after radionuclide therapy: preclinical comparison of 161Tb-folate and 177Lu-folate. EJNMMI Res. 2016;6.
4.
go back to reference Hindié E, Zanotti-Fregonara P, Quinto MA, Morgat C, Champion C. Dose deposits from 90Y, 177Lu, 111In, and 161Tb in micrometastases of various sizes: implications for radiopharmaceutical therapy. J Nucl Med. 2016;57:759–64.CrossRef Hindié E, Zanotti-Fregonara P, Quinto MA, Morgat C, Champion C. Dose deposits from 90Y, 177Lu, 111In, and 161Tb in micrometastases of various sizes: implications for radiopharmaceutical therapy. J Nucl Med. 2016;57:759–64.CrossRef
5.
go back to reference Champion C, Quinto MA, Morgat C, Zanotti-Fregonara P, Hindié E. Comparison between three promising ß-emitting radionuclides, 67Cu, 47Sc and 161Tb, with emphasis on doses delivered to minimal residual disease. Theranostics. 2016;6:1611–8.CrossRef Champion C, Quinto MA, Morgat C, Zanotti-Fregonara P, Hindié E. Comparison between three promising ß-emitting radionuclides, 67Cu, 47Sc and 161Tb, with emphasis on doses delivered to minimal residual disease. Theranostics. 2016;6:1611–8.CrossRef
6.
go back to reference Müller C, Umbricht CA, Gracheva N, et al. Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. Eur J Nucl Med Mol Imaging. 2019. Müller C, Umbricht CA, Gracheva N, et al. Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. Eur J Nucl Med Mol Imaging. 2019.
7.
go back to reference Müller C, Reber J, Haller S, et al. Direct in vitro and in vivo comparison of 161Tb and 177Lu using a tumour-targeting folate conjugate. Eur J Nucl Med Mol Imaging. 2014;41:476–85.CrossRef Müller C, Reber J, Haller S, et al. Direct in vitro and in vivo comparison of 161Tb and 177Lu using a tumour-targeting folate conjugate. Eur J Nucl Med Mol Imaging. 2014;41:476–85.CrossRef
8.
go back to reference Bavelaar BM, Lee BQ, Gill MR, Falzone N, Vallis KA. Subcellular targeting of theranostic radionuclides. Front Pharmacol. 2018;9:996.CrossRef Bavelaar BM, Lee BQ, Gill MR, Falzone N, Vallis KA. Subcellular targeting of theranostic radionuclides. Front Pharmacol. 2018;9:996.CrossRef
9.
go back to reference Morgat C, Mishra AK, Varshney R, Allard M, Fernandez P, Hindié E. Targeting neuropeptide receptors for cancer imaging and therapy: perspectives with bombesin, neurotensin, and neuropeptide-Y receptors. J Nucl Med. 2014;55:1650–7.CrossRef Morgat C, Mishra AK, Varshney R, Allard M, Fernandez P, Hindié E. Targeting neuropeptide receptors for cancer imaging and therapy: perspectives with bombesin, neurotensin, and neuropeptide-Y receptors. J Nucl Med. 2014;55:1650–7.CrossRef
10.
go back to reference Morgat C, Macgrogan G, Brouste V, et al. Expression of gastrin-releasing peptide receptor in breast cancer and its association with pathologic, biologic, and clinical parameters: a study of 1,432 primary tumors. J Nucl Med. 2017:1401–7. Morgat C, Macgrogan G, Brouste V, et al. Expression of gastrin-releasing peptide receptor in breast cancer and its association with pathologic, biologic, and clinical parameters: a study of 1,432 primary tumors. J Nucl Med. 2017:1401–7.
11.
go back to reference Reubi JC, Gugger M, Waser B, Schaer JC. Y1-mediated effect of neuropeptide-Y in cancer: breast carcinomas as targets. Cancer Res. 2001;61:4636–41.PubMed Reubi JC, Gugger M, Waser B, Schaer JC. Y1-mediated effect of neuropeptide-Y in cancer: breast carcinomas as targets. Cancer Res. 2001;61:4636–41.PubMed
12.
go back to reference Söll RM, Dinger MC, Lundell I, Larhammer D, Beck-Sickinger AG. Novel analogues of neuropeptide-Y with a preference for the Y1-receptor. Eur J Biochem. 2001;268:2828–37.CrossRef Söll RM, Dinger MC, Lundell I, Larhammer D, Beck-Sickinger AG. Novel analogues of neuropeptide-Y with a preference for the Y1-receptor. Eur J Biochem. 2001;268:2828–37.CrossRef
13.
go back to reference Böhme D, Beck-Sickinger AG. Controlling toxicity of peptide-drug conjugates by different chemical linker structures. ChemMedChem. 2015;10:804–14.CrossRef Böhme D, Beck-Sickinger AG. Controlling toxicity of peptide-drug conjugates by different chemical linker structures. ChemMedChem. 2015;10:804–14.CrossRef
15.
go back to reference Zhong Y-J, Shao L-H, Li Y. Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy. Int J Oncol. 2013;42:373–83.CrossRef Zhong Y-J, Shao L-H, Li Y. Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy. Int J Oncol. 2013;42:373–83.CrossRef
16.
go back to reference Dang CV, Lee WM. Identification of the human c-myc protein nuclear translocation signal. Mol Cell Biol. 1988;8:4048–54.CrossRef Dang CV, Lee WM. Identification of the human c-myc protein nuclear translocation signal. Mol Cell Biol. 1988;8:4048–54.CrossRef
17.
go back to reference Hofmann S, Maschauer S, Kuwert T, Beck-Sickinger AG, Prante O. Synthesis and in vitro and in vivo evaluation of an 18F-labeled neuropeptide-Y analogue for imaging of breast cancer by PET. Mol Pharmaceutics. 2015;12:1121–30.CrossRef Hofmann S, Maschauer S, Kuwert T, Beck-Sickinger AG, Prante O. Synthesis and in vitro and in vivo evaluation of an 18F-labeled neuropeptide-Y analogue for imaging of breast cancer by PET. Mol Pharmaceutics. 2015;12:1121–30.CrossRef
18.
go back to reference Ginj M, Hinni K, Tschumi S, Schulz S, Maecke HR. Trifunctional somatostatin-based derivatives designed for targeted radiotherapy using Auger electron emitters. J Nucl Med. 2005;46:2097–103.PubMed Ginj M, Hinni K, Tschumi S, Schulz S, Maecke HR. Trifunctional somatostatin-based derivatives designed for targeted radiotherapy using Auger electron emitters. J Nucl Med. 2005;46:2097–103.PubMed
19.
go back to reference Maschauer S, Ott JJ, Bernhardt G, Kuwert T, Keller M, Prante O. 18F-labelled triazolyl-linked argininamides targeting the neuropeptide-Y Y1R for PET imaging of mammary carcinoma. Sci Rep. 2019;9:1–12.CrossRef Maschauer S, Ott JJ, Bernhardt G, Kuwert T, Keller M, Prante O. 18F-labelled triazolyl-linked argininamides targeting the neuropeptide-Y Y1R for PET imaging of mammary carcinoma. Sci Rep. 2019;9:1–12.CrossRef
20.
go back to reference Müller C, Zhernosekov K, Köster U, et al. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β−-radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med. 2012;53:1951–9.CrossRef Müller C, Zhernosekov K, Köster U, et al. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β−-radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med. 2012;53:1951–9.CrossRef
21.
go back to reference Keller M, Maschauer S, Brennauer A, et al. Prototypic 18F-labeled argininamide-type neuropeptide-Y Y1R antagonists as tracers for PET imaging of mammary carcinoma. ACS Med Chem Lett. 2017;8:304–9.CrossRef Keller M, Maschauer S, Brennauer A, et al. Prototypic 18F-labeled argininamide-type neuropeptide-Y Y1R antagonists as tracers for PET imaging of mammary carcinoma. ACS Med Chem Lett. 2017;8:304–9.CrossRef
22.
go back to reference Zhang C, Pan J, Lin K-S, et al. Targeting the neuropeptide-Y1 receptor for cancer imaging by positron emission tomography using novel truncated peptides. Mol Pharmaceutics. 2016;13:3657–64.CrossRef Zhang C, Pan J, Lin K-S, et al. Targeting the neuropeptide-Y1 receptor for cancer imaging by positron emission tomography using novel truncated peptides. Mol Pharmaceutics. 2016;13:3657–64.CrossRef
23.
go back to reference Zwanziger D, Khan IU, Neundorf I, et al. Novel chemically modified analogues of neuropeptide-Y for tumor targeting. Bioconjugate Chem. 2008;19:1430–8.CrossRef Zwanziger D, Khan IU, Neundorf I, et al. Novel chemically modified analogues of neuropeptide-Y for tumor targeting. Bioconjugate Chem. 2008;19:1430–8.CrossRef
24.
go back to reference Yoneda Y, Hieda M, Nagoshi E, Miyamoto Y. Nucleocytoplasmic protein transport and recycling of Ran. Cell Struct Funct. 1999;24:425–33.CrossRef Yoneda Y, Hieda M, Nagoshi E, Miyamoto Y. Nucleocytoplasmic protein transport and recycling of Ran. Cell Struct Funct. 1999;24:425–33.CrossRef
25.
go back to reference Avadisian M, Gunning PT. Extolling the benefits of molecular therapeutic lipidation. Mol BioSyst. 2013;9:2179–88.CrossRef Avadisian M, Gunning PT. Extolling the benefits of molecular therapeutic lipidation. Mol BioSyst. 2013;9:2179–88.CrossRef
26.
go back to reference Pouget J-P, Lozza C, Deshayes E, Boudousq V, Navarro-Teulon I. Introduction to radiobiology of targeted radionuclide therapy. Front Med (Lausanne). 2015;2:12. Pouget J-P, Lozza C, Deshayes E, Boudousq V, Navarro-Teulon I. Introduction to radiobiology of targeted radionuclide therapy. Front Med (Lausanne). 2015;2:12.
27.
go back to reference Mäde V, Babilon S, Jolly N, et al. Peptide modifications differentially alter G protein-coupled receptor internalization and signaling bias. Angew Chem Int Ed Engl. 2014;53:10067–71.CrossRef Mäde V, Babilon S, Jolly N, et al. Peptide modifications differentially alter G protein-coupled receptor internalization and signaling bias. Angew Chem Int Ed Engl. 2014;53:10067–71.CrossRef
28.
go back to reference Lundell I, Rabe Bernhardt N, Johnsson A-K, Larhammar D. Internalization studies of chimeric neuropeptide-Y receptors Y1 and Y2 suggest complex interactions between cytoplasmic domains. Regul Pept. 2011;168:50–8.CrossRef Lundell I, Rabe Bernhardt N, Johnsson A-K, Larhammar D. Internalization studies of chimeric neuropeptide-Y receptors Y1 and Y2 suggest complex interactions between cytoplasmic domains. Regul Pept. 2011;168:50–8.CrossRef
29.
go back to reference Wanka L, Babilon S, Kaiser A, Mörl K, Beck-Sickinger AG. Different mode of arrestin-3 binding at the human Y1 and Y2 receptor. Cell Signal. 2018;50:58–71.CrossRef Wanka L, Babilon S, Kaiser A, Mörl K, Beck-Sickinger AG. Different mode of arrestin-3 binding at the human Y1 and Y2 receptor. Cell Signal. 2018;50:58–71.CrossRef
30.
go back to reference Wagstaff KM, Jans DA. Nuclear drug delivery to target tumour cells. Eur J Pharmacol. 2009;625:174–80.CrossRef Wagstaff KM, Jans DA. Nuclear drug delivery to target tumour cells. Eur J Pharmacol. 2009;625:174–80.CrossRef
31.
go back to reference Costantini DL, Chan C, Cai Z, Vallis KA, Reilly RM. 111In-labeled Trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer. J Nucl Med. 2007;48:1357–68.CrossRef Costantini DL, Chan C, Cai Z, Vallis KA, Reilly RM. 111In-labeled Trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer. J Nucl Med. 2007;48:1357–68.CrossRef
32.
go back to reference Hofmann S, Bellmann-Sickert K, Beck-Sickinger AG. Chemical modification of neuropeptide-Y for human Y1 receptor targeting in health and disease. Biological Chemistry. 2019;400:299–311.CrossRef Hofmann S, Bellmann-Sickert K, Beck-Sickinger AG. Chemical modification of neuropeptide-Y for human Y1 receptor targeting in health and disease. Biological Chemistry. 2019;400:299–311.CrossRef
Metadata
Title
Design, synthesis, and biological evaluation of a multifunctional neuropeptide-Y conjugate for selective nuclear delivery of radiolanthanides
Authors
Adrien Chastel
Dennis J. Worm
Isabel D. Alves
Delphine Vimont
Melina Petrel
Samantha Fernandez
Philippe Garrigue
Philippe Fernandez
Elif Hindié
Annette G. Beck-Sickinger
Clément Morgat
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2020
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-020-0612-8

Other articles of this Issue 1/2020

EJNMMI Research 1/2020 Go to the issue