Skip to main content
Top
Published in: EJNMMI Research 1/2020

Open Access 01-12-2020 | Positron Emission Tomography | Original research

Blocking of efflux transporters in rats improves translational validation of brain radioligands

Authors: Vladimir Shalgunov, Mengfei Xiong, Elina T. L’Estrade, Nakul R. Raval, Ida V. Andersen, Fraser G. Edgar, Nikolaj R. Speth, Simone L. Baerentzen, Hanne D. Hansen, Lene L. Donovan, Arafat Nasser, Siv T. Peitersen, Andreas Kjaer, Gitte M. Knudsen, Stina Syvänen, Mikael Palner, Matthias M. Herth

Published in: EJNMMI Research | Issue 1/2020

Login to get access

Abstract

Background

Positron emission tomography (PET) is a molecular imaging technique that can be used to investigate the in vivo pharmacology of drugs. Initial preclinical evaluation of PET tracers is often conducted in rodents due to the accessibility of disease models as well as economic considerations. Compared to larger species, rodents display a higher expression and/or activity of efflux transporters such as the P-glycoprotein (P-gp). Low brain uptake could, therefore, be species-specific and uptake in rodents not be predictive for that in humans. We hypothesized that a better prediction from rodent data could be achieved when a tracer is evaluated under P-gp inhibition. Consequently, we compared the performance of eight neuroreceptor tracers in rats with and without P-gp inhibition including a specific binding blockade. This data set was then used to predict the binding of these eight tracers in pigs.

Methods

PET tracers targeting serotonin 5-HT2A receptors ([18F]MH.MZ, [18F]Altanserin, [11C]Cimbi-36, [11C]Pimavanserin), serotonin 5-HT7 receptors ([11C]Cimbi-701, [11C]Cimbi-717 and [11C]BA-10) and dopamine D2/3 receptors ([18F]Fallypride) were used in the study. The brain uptake and target-specific binding of these PET radiotracers were evaluated in rats with and without inhibition of P-gp. Rat data were subsequently compared to the results obtained in pigs.

Results

Without P-gp inhibition, the amount of target-specific binding in the rat brain was sufficient to justify further translation for three out of eight evaluated tracers. With P-gp inhibition, results for five out of eight tracers justified further translation. The performance in pigs could correctly be predicted for six out of eight tracers when rat data obtained under P-gp inhibition were used, compared to four out of eight tracers without P-gp inhibition.

Conclusions

P-gp strongly affects the uptake of PET tracers in rodents, but false prediction outcomes can be reduced by evaluating a tracer under P-gp inhibition.
Appendix
Available only for authorised users
Literature
2.
go back to reference Matthews PM, Rabiner EA, Passchier J, Gunn RN. Positron emission tomography molecular imaging for drug development. Br J Clin Pharmacol. 2012;73:175–86.PubMedPubMedCentralCrossRef Matthews PM, Rabiner EA, Passchier J, Gunn RN. Positron emission tomography molecular imaging for drug development. Br J Clin Pharmacol. 2012;73:175–86.PubMedPubMedCentralCrossRef
3.
go back to reference Comley J. In vivo preclinical imaging: An essential tool in translational research. Drug Discov World. 2011;11:58–71. Comley J. In vivo preclinical imaging: An essential tool in translational research. Drug Discov World. 2011;11:58–71.
5.
go back to reference Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Metab Toxicol. 2013;9:237–52.PubMedCrossRef Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Metab Toxicol. 2013;9:237–52.PubMedCrossRef
6.
go back to reference Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, et al. Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem. 2011;117:333–45.PubMedCrossRef Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, et al. Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem. 2011;117:333–45.PubMedCrossRef
7.
go back to reference Löscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci. 2005;6:591–602.PubMedCrossRef Löscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci. 2005;6:591–602.PubMedCrossRef
8.
go back to reference Schmitt U, Lee DE, Herth MM, Piel M, Buchholz H-G, Roesch F, et al. P-glycoprotein influence on the brain uptake of a 5-HT2A ligand: [18F]MHMZ. Neuropsychobiology. 2011;63:183–90.PubMedCrossRef Schmitt U, Lee DE, Herth MM, Piel M, Buchholz H-G, Roesch F, et al. P-glycoprotein influence on the brain uptake of a 5-HT2A ligand: [18F]MHMZ. Neuropsychobiology. 2011;63:183–90.PubMedCrossRef
9.
go back to reference Choi JY, Song JS, Lee M, Cho WK, Chung J, Lyoo CH, et al. P-glycoprotein, not BCRP, limits the brain uptake of [18F]Mefway in rodent brain. Mol Imaging Biol. 2016;18:267–73.PubMedCrossRef Choi JY, Song JS, Lee M, Cho WK, Chung J, Lyoo CH, et al. P-glycoprotein, not BCRP, limits the brain uptake of [18F]Mefway in rodent brain. Mol Imaging Biol. 2016;18:267–73.PubMedCrossRef
10.
go back to reference Syvänen S, Lindhe Ö, Palner M, Kornum BR, Rahman O, Långström B, et al. Species differences in blood–brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos. 2009;37:635–43.PubMedCrossRef Syvänen S, Lindhe Ö, Palner M, Kornum BR, Rahman O, Långström B, et al. Species differences in blood–brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos. 2009;37:635–43.PubMedCrossRef
11.
go back to reference Keller SH, L’Estrade EN, Dall B, Palner M, Herth M. Quantification accuracy of a new HRRT high throughput rat hotel using transmission-based attenuation correction: a phantom study. In: 2016 IEEE nuclear science symposium (NSS) and medical imaging conf room-temperature semicond detect work. IEEE; 2016. p. 1–3. Keller SH, L’Estrade EN, Dall B, Palner M, Herth M. Quantification accuracy of a new HRRT high throughput rat hotel using transmission-based attenuation correction: a phantom study. In: 2016 IEEE nuclear science symposium (NSS) and medical imaging conf room-temperature semicond detect work. IEEE; 2016. p. 1–3.
12.
go back to reference Lemaire C, Cantineau R, Guillaume M, Plenevaux A, Christiaens L. Fluorine-18-altanserin: a radioligand for the study of serotonin receptors with PET: radiolabeling and in vivo biologic behavior in rats. J Nucl Med Soc Nucl Med. 1991;32:2266–72. Lemaire C, Cantineau R, Guillaume M, Plenevaux A, Christiaens L. Fluorine-18-altanserin: a radioligand for the study of serotonin receptors with PET: radiolabeling and in vivo biologic behavior in rats. J Nucl Med Soc Nucl Med. 1991;32:2266–72.
13.
go back to reference Mukherjee J, Yang Z-Y, Das MK, Brown T. Fluorinated benzamide neuroleptics—III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[18F]fluoropropyl)-2,3-dimethoxybenzamide as an improved dopamine D-2 receptor tracer. Nucl Med Biol. 1995;22:283–96.PubMedCrossRef Mukherjee J, Yang Z-Y, Das MK, Brown T. Fluorinated benzamide neuroleptics—III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[18F]fluoropropyl)-2,3-dimethoxybenzamide as an improved dopamine D-2 receptor tracer. Nucl Med Biol. 1995;22:283–96.PubMedCrossRef
14.
go back to reference Herth MM, Debus F, Piel M, Palner M, Knudsen GM, Lüddens H, et al. Total synthesis and evaluation of [18F]MHMZ. Bioorg Med Chem Lett. 2008;18:1515–9.PubMedCrossRef Herth MM, Debus F, Piel M, Palner M, Knudsen GM, Lüddens H, et al. Total synthesis and evaluation of [18F]MHMZ. Bioorg Med Chem Lett. 2008;18:1515–9.PubMedCrossRef
15.
go back to reference Ettrup A, Hansen M, Santini MA, Paine J, Gillings N, Palner M, et al. Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT2A agonist PET tracers. Eur J Nucl Med Mol Imaging. 2011;38:681–93.PubMedCrossRef Ettrup A, Hansen M, Santini MA, Paine J, Gillings N, Palner M, et al. Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT2A agonist PET tracers. Eur J Nucl Med Mol Imaging. 2011;38:681–93.PubMedCrossRef
16.
go back to reference Hansen HD, Herth MM, Ettrup A, Andersen VL, Lehel S, Dyssegaard A, et al. Radiosynthesis and in vivo evaluation of novel radioligands for PET imaging of cerebral 5-HT7 receptors. J Nucl Med. 2014;55:640–6.PubMedCrossRef Hansen HD, Herth MM, Ettrup A, Andersen VL, Lehel S, Dyssegaard A, et al. Radiosynthesis and in vivo evaluation of novel radioligands for PET imaging of cerebral 5-HT7 receptors. J Nucl Med. 2014;55:640–6.PubMedCrossRef
17.
go back to reference Hansen HD, Lacivita E, Di Pilato P, Herth MM, Lehel S, Ettrup A, et al. Synthesis, radiolabeling and in vivo evaluation of [11C](R)-1-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]-3-(2-pyrazinyloxy)-2-propanol, a potential PET radioligand for the 5-HT7 receptor. Eur J Med Chem. 2014;79:152–63.PubMedCrossRef Hansen HD, Lacivita E, Di Pilato P, Herth MM, Lehel S, Ettrup A, et al. Synthesis, radiolabeling and in vivo evaluation of [11C](R)-1-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]-3-(2-pyrazinyloxy)-2-propanol, a potential PET radioligand for the 5-HT7 receptor. Eur J Med Chem. 2014;79:152–63.PubMedCrossRef
18.
go back to reference Herth M, Hansen H, Anders E, Lehel S, Kristensen J, Billard T, et al. Development of a novel 11C-labelled SB-269970 derivative for imaging the cerebral 5-HT7 receptors. J Nucl Med Soc Nucl Med. 2014;55:1814. Herth M, Hansen H, Anders E, Lehel S, Kristensen J, Billard T, et al. Development of a novel 11C-labelled SB-269970 derivative for imaging the cerebral 5-HT7 receptors. J Nucl Med Soc Nucl Med. 2014;55:1814.
19.
go back to reference Andersen VL, Hansen HD, Herth MM, Dyssegaard A, Knudsen GM, Kristensen JL. 11C-labeling and preliminary evaluation of pimavanserin as a 5-HT2A receptor PET-radioligand. Bioorg Med Chem Lett. 2015;25:1053–6.PubMedCrossRef Andersen VL, Hansen HD, Herth MM, Dyssegaard A, Knudsen GM, Kristensen JL. 11C-labeling and preliminary evaluation of pimavanserin as a 5-HT2A receptor PET-radioligand. Bioorg Med Chem Lett. 2015;25:1053–6.PubMedCrossRef
20.
go back to reference van Nueten JM, Janssen PAJ, van Beek J, Xhonneux R, Verbeuren TJ, Vanhoutte PM. Vascular effects of Ketanserin (R 41 468), a novel antagonist of 5-HT2 serotonergic receptors. J Pharmacol Exp Ther. 1981;218:217–30.PubMed van Nueten JM, Janssen PAJ, van Beek J, Xhonneux R, Verbeuren TJ, Vanhoutte PM. Vascular effects of Ketanserin (R 41 468), a novel antagonist of 5-HT2 serotonergic receptors. J Pharmacol Exp Ther. 1981;218:217–30.PubMed
21.
go back to reference Lovell PJ, Bromidge SM, Dabbs S, Duckworth DM, Forbes IT, Jennings AJ, et al. A novel, potent, and selective 5-HT 7 antagonist: (R)-3-(2-(2-(4-Methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970). J Med Chem. 2000;43:342–5.PubMedCrossRef Lovell PJ, Bromidge SM, Dabbs S, Duckworth DM, Forbes IT, Jennings AJ, et al. A novel, potent, and selective 5-HT 7 antagonist: (R)-3-(2-(2-(4-Methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970). J Med Chem. 2000;43:342–5.PubMedCrossRef
22.
go back to reference Burt DR, Creese I, Snyder SH. Properties of [3H] haloperidol and [3H]dopamine binding associated with dopamine receptors in calf brain membranes. Mol Pharmacol. 1976;12:800–12.PubMed Burt DR, Creese I, Snyder SH. Properties of [3H] haloperidol and [3H]dopamine binding associated with dopamine receptors in calf brain membranes. Mol Pharmacol. 1976;12:800–12.PubMed
23.
go back to reference Kallem R, Kulkarni C, Patel D, Thakur M, Sinz M, Singh S, et al. A simplified protocol employing elacridar in rodents: a screening model in drug discovery to assess P-gp mediated efflux at the blood brain barrier. Drug Metab Lett. 2012;6:134–44.PubMedCrossRef Kallem R, Kulkarni C, Patel D, Thakur M, Sinz M, Singh S, et al. A simplified protocol employing elacridar in rodents: a screening model in drug discovery to assess P-gp mediated efflux at the blood brain barrier. Drug Metab Lett. 2012;6:134–44.PubMedCrossRef
24.
go back to reference Schiffer WK, Mirrione MM, Biegon A, Alexoff DL, Patel V, Dewey SL. Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J Neurosci Methods. 2006;155:272–84.PubMedCrossRef Schiffer WK, Mirrione MM, Biegon A, Alexoff DL, Patel V, Dewey SL. Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J Neurosci Methods. 2006;155:272–84.PubMedCrossRef
25.
go back to reference Scott DO, Heath TG. Investigation of the CNS penetration of a potent 5-HT2a receptor antagonist (MDL 100,907) and an active metabolite (MDL 105,725) using in vivo microdialysis sampling in the rat. J Pharm Biomed Anal. 1998;17:17–25.PubMedCrossRef Scott DO, Heath TG. Investigation of the CNS penetration of a potent 5-HT2a receptor antagonist (MDL 100,907) and an active metabolite (MDL 105,725) using in vivo microdialysis sampling in the rat. J Pharm Biomed Anal. 1998;17:17–25.PubMedCrossRef
26.
go back to reference Tantawy MN, Jones CK, Baldwin RM, Ansari MS, Conn PJ, Kessler RM, et al. [18F]Fallypride dopamine D2 receptor studies using delayed microPET scans and a modified Logan plot. Nucl Med Biol. 2009;36:931–40.PubMedPubMedCentralCrossRef Tantawy MN, Jones CK, Baldwin RM, Ansari MS, Conn PJ, Kessler RM, et al. [18F]Fallypride dopamine D2 receptor studies using delayed microPET scans and a modified Logan plot. Nucl Med Biol. 2009;36:931–40.PubMedPubMedCentralCrossRef
27.
go back to reference L’Estrade ET, Shalgunov V, Edgar FG, Strebl-Bantillo MG, Xiong M, Crestey F, et al. Radiosynthesis and preclinical evaluation of [11C]Cimbi-701—towards the imaging of cerebral 5-HT 7 receptors. J Label Compd Radiopharm. 2020;63:46–55.CrossRef L’Estrade ET, Shalgunov V, Edgar FG, Strebl-Bantillo MG, Xiong M, Crestey F, et al. Radiosynthesis and preclinical evaluation of [11C]Cimbi-701—towards the imaging of cerebral 5-HT 7 receptors. J Label Compd Radiopharm. 2020;63:46–55.CrossRef
28.
go back to reference Hansen HD, Ettrup A, Herth MM, Dyssegaard A, Ratner C, Gillings N, et al. Direct comparison of [18F]MH.MZ and [18 F]altanserin for 5-HT 2A receptor imaging with PET. Synapse. 2013;67:328–37.PubMedCrossRef Hansen HD, Ettrup A, Herth MM, Dyssegaard A, Ratner C, Gillings N, et al. Direct comparison of [18F]MH.MZ and [18 F]altanserin for 5-HT 2A receptor imaging with PET. Synapse. 2013;67:328–37.PubMedCrossRef
29.
go back to reference Breedveld P, Beijnen JH, Schellens JHM. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci. 2006;27:17–24.PubMedCrossRef Breedveld P, Beijnen JH, Schellens JHM. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci. 2006;27:17–24.PubMedCrossRef
30.
go back to reference Ramu A, Ramu N. Reversal of multidrug resistance by phenothiazines and structurally related compounds. Cancer Chemother Pharmacol. 1992;30:165–73.PubMedCrossRef Ramu A, Ramu N. Reversal of multidrug resistance by phenothiazines and structurally related compounds. Cancer Chemother Pharmacol. 1992;30:165–73.PubMedCrossRef
31.
go back to reference Stouch TR, Gudmundsson O. Progress in understanding the structure–activity relationships of P-glycoprotein. Adv Drug Deliv Rev. 2002;54:315–28.PubMedCrossRef Stouch TR, Gudmundsson O. Progress in understanding the structure–activity relationships of P-glycoprotein. Adv Drug Deliv Rev. 2002;54:315–28.PubMedCrossRef
32.
go back to reference Wang X, Fang Y, Liang J, Yan M, Hu R, Pan X. 5-HT7 receptors are involved in neurogenic dural vasodilatation in an experimental model of migraine. J Mol Neurosci. 2014;54:164–70.PubMedCrossRef Wang X, Fang Y, Liang J, Yan M, Hu R, Pan X. 5-HT7 receptors are involved in neurogenic dural vasodilatation in an experimental model of migraine. J Mol Neurosci. 2014;54:164–70.PubMedCrossRef
33.
go back to reference Kramer V, Dyssegaard A, Flores J, Soza-Ried C, Rösch F, Knudsen GM, et al. Characterization of the serotonin 2A receptor selective PET tracer (R)-[18F]MH.MZ in the human brain. Eur J Nucl Med Mol Imaging. 2020;47:355–65.PubMedCrossRef Kramer V, Dyssegaard A, Flores J, Soza-Ried C, Rösch F, Knudsen GM, et al. Characterization of the serotonin 2A receptor selective PET tracer (R)-[18F]MH.MZ in the human brain. Eur J Nucl Med Mol Imaging. 2020;47:355–65.PubMedCrossRef
34.
go back to reference Sadzot B, Lemaire C, Maquet P, Salmon E, Plenevaux A, Degueldre C, et al. Serotonin 5HT2 receptor imaging in the human brain using positron emission tomography and a new radioligand, [18F]altanserin: results in young normal controls. J Cereb Blood Flow Metab. 1995;15:787–97.PubMedCrossRef Sadzot B, Lemaire C, Maquet P, Salmon E, Plenevaux A, Degueldre C, et al. Serotonin 5HT2 receptor imaging in the human brain using positron emission tomography and a new radioligand, [18F]altanserin: results in young normal controls. J Cereb Blood Flow Metab. 1995;15:787–97.PubMedCrossRef
35.
go back to reference Ettrup A, da Cunha-Bang S, McMahon B, Lehel S, Dyssegaard A, Skibsted AW, et al. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36. J Cereb Blood Flow Metab. 2014;34:1188–96.PubMedPubMedCentralCrossRef Ettrup A, da Cunha-Bang S, McMahon B, Lehel S, Dyssegaard A, Skibsted AW, et al. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36. J Cereb Blood Flow Metab. 2014;34:1188–96.PubMedPubMedCentralCrossRef
36.
go back to reference Mukherjee J, Christian BT, Dunigan KA, Shi B, Narayanan TK, Satter M, et al. Brain imaging of18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse. 2002;46:170–88.PubMedCrossRef Mukherjee J, Christian BT, Dunigan KA, Shi B, Narayanan TK, Satter M, et al. Brain imaging of18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse. 2002;46:170–88.PubMedCrossRef
37.
go back to reference Vanover KE, Weiner DM, Makhay M, Veinbergs I, Gardell LR, Lameh J, et al. Pharmacological and behavioral profile of N-(4-Fluorophenylmethyl)-N-(1-methylpiperidin-4-yl) N′-(4-(2-methylpropyloxy)phenylmethyl) carbamide (2R,3R)-dihydroxybutanedioate (2:1) (ACP-103), a novel 5-hydroxytryptamine 2A receptor inverse agonist. J Pharmacol Exp Ther. 2006;317:910–8.PubMedCrossRef Vanover KE, Weiner DM, Makhay M, Veinbergs I, Gardell LR, Lameh J, et al. Pharmacological and behavioral profile of N-(4-Fluorophenylmethyl)-N-(1-methylpiperidin-4-yl) N′-(4-(2-methylpropyloxy)phenylmethyl) carbamide (2R,3R)-dihydroxybutanedioate (2:1) (ACP-103), a novel 5-hydroxytryptamine 2A receptor inverse agonist. J Pharmacol Exp Ther. 2006;317:910–8.PubMedCrossRef
38.
go back to reference Fowler JS, Ding YS, Logan J, Macgregor RR, Shea C, Garza V, et al. Species differences in [11C]clorgyline binding in brain. Nucl Med Biol. 2001;28:779–85.PubMedCrossRef Fowler JS, Ding YS, Logan J, Macgregor RR, Shea C, Garza V, et al. Species differences in [11C]clorgyline binding in brain. Nucl Med Biol. 2001;28:779–85.PubMedCrossRef
39.
go back to reference Ma Y, Lang L, Kiesewetter D, Jagoda E, Eckelman WC. Species differences in metabolites of PET ligands: serotonergic 5-HT1A receptor antagonists 3-trans-FCWAY and 3-cis-FCWAY. Nucl Med Biol. 2006;33:1013–9.PubMedCrossRef Ma Y, Lang L, Kiesewetter D, Jagoda E, Eckelman WC. Species differences in metabolites of PET ligands: serotonergic 5-HT1A receptor antagonists 3-trans-FCWAY and 3-cis-FCWAY. Nucl Med Biol. 2006;33:1013–9.PubMedCrossRef
40.
go back to reference Herth MM, Knudsen GM. PET imaging of the 5-HT2A receptor system: a tool to study the receptor’s in vivo brain function. In: Guiard B, Di Giovanni G, editors. 5-HT2A receptors in the central nervous system. Cham: Humana Press; 2018. p. 86–135. Herth MM, Knudsen GM. PET imaging of the 5-HT2A receptor system: a tool to study the receptor’s in vivo brain function. In: Guiard B, Di Giovanni G, editors. 5-HT2A receptors in the central nervous system. Cham: Humana Press; 2018. p. 86–135.
41.
go back to reference L’Estrade ET, Erlandsson M, Edgar FG, Ohlsson T, Knudsen GM, Herth MM. Towards selective CNS PET imaging of the 5-HT7 receptor system: past, present and future. Neuropharmacology. 2020;172:107830.PubMedCrossRef L’Estrade ET, Erlandsson M, Edgar FG, Ohlsson T, Knudsen GM, Herth MM. Towards selective CNS PET imaging of the 5-HT7 receptor system: past, present and future. Neuropharmacology. 2020;172:107830.PubMedCrossRef
42.
go back to reference Cumming P. Absolute abundances and affinity states of dopamine receptors in mammalian brain: a review. Synapse. 2011;65:892–909.PubMedCrossRef Cumming P. Absolute abundances and affinity states of dopamine receptors in mammalian brain: a review. Synapse. 2011;65:892–909.PubMedCrossRef
Metadata
Title
Blocking of efflux transporters in rats improves translational validation of brain radioligands
Authors
Vladimir Shalgunov
Mengfei Xiong
Elina T. L’Estrade
Nakul R. Raval
Ida V. Andersen
Fraser G. Edgar
Nikolaj R. Speth
Simone L. Baerentzen
Hanne D. Hansen
Lene L. Donovan
Arafat Nasser
Siv T. Peitersen
Andreas Kjaer
Gitte M. Knudsen
Stina Syvänen
Mikael Palner
Matthias M. Herth
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2020
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-020-00718-x

Other articles of this Issue 1/2020

EJNMMI Research 1/2020 Go to the issue