Skip to main content
Top
Published in: EJNMMI Research 1/2020

Open Access 01-12-2020 | Positron Emission Tomography | Original research

Plasma radio-metabolite analysis of PET tracers for dynamic PET imaging: TLC and autoradiography

Authors: Fiona Li, Justin W. Hicks, Lihai Yu, Lise Desjardin, Laura Morrison, Jennifer Hadway, Ting-Yim Lee

Published in: EJNMMI Research | Issue 1/2020

Login to get access

Abstract

Background

In molecular imaging with dynamic PET, the binding and dissociation of a targeted tracer is characterized by kinetics modeling which requires the arterial concentration of the tracer to be measured accurately. Once in the body the radiolabeled parent tracer may be subjected to hydrolysis, demethylation/dealkylation and other biochemical processes, resulting in the production and accumulation of different metabolites in blood which can be labeled with the same PET radionuclide as the parent. Since these radio-metabolites cannot be distinguished by PET scanning from the parent tracer, their contribution to the arterial concentration curve has to be removed for the accurate estimation of kinetic parameters from kinetic analysis of dynamic PET. High-performance liquid chromatography has been used to separate and measure radio-metabolites in blood plasma; however, the method is labor intensive and remains a challenge to implement for each individual patient. The purpose of this study is to develop an alternate technique based on thin layer chromatography (TLC) and a sensitive commercial autoradiography system (Beaver, Ai4R, Nantes, France) to measure radio-metabolites in blood plasma of two targeted tracers—[18F]FAZA and [18F]FEPPA, for imaging hypoxia and inflammation, respectively.

Results

Radioactivity as low as 17 Bq in 2 µL of pig’s plasma can be detected on the TLC plate using autoradiography. Peaks corresponding to the parent tracer and radio-metabolites could be distinguished in the line profile through each sample (n = 8) in the autoradiographic image. Significant intersubject and intra-subject variability in radio-metabolites production could be observed with both tracers. For [18F]FEPPA, 50% of plasma activity was from radio-metabolites as early as 5-min post injection, while for [18F]FAZA, significant metabolites did not appear until 50-min post. Simulation study investigating the effect of radio-metabolite in the estimation of kinetic parameters indicated that 32–400% parameter error can result without radio-metabolites correction.

Conclusion

TLC coupled with autoradiography is a good alternative to high-performance liquid chromatography for radio-metabolite correction. The advantages of requiring only small blood samples (~ 100 μL) and of analyzing multiple samples simultaneously, make the method suitable for individual dynamic PET studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pawelke B. Metabolite analysis in positron emission tomography studies: examples from food sciences. Amino Acids. 2005;29(4 SPEC. ISS.):377–88.PubMedCrossRef Pawelke B. Metabolite analysis in positron emission tomography studies: examples from food sciences. Amino Acids. 2005;29(4 SPEC. ISS.):377–88.PubMedCrossRef
2.
go back to reference Wang RF, Loc’h C, Mazière B. Determination of unchanged [18F]dopamine in human and nonhuman primate plasma during positron emission tomography studies: a new solid-phase extraction method comparable to radio-thin-layer chromatography analysis. J Chromatogr B Biomed Appl. 1997;693(2):265–70.CrossRef Wang RF, Loc’h C, Mazière B. Determination of unchanged [18F]dopamine in human and nonhuman primate plasma during positron emission tomography studies: a new solid-phase extraction method comparable to radio-thin-layer chromatography analysis. J Chromatogr B Biomed Appl. 1997;693(2):265–70.CrossRef
3.
go back to reference Ma Y, Kiesewetter DO, Lang L, Der M, Huang B, Carson RE, et al. Determination of [18F]FCWAY, [18F]FP-TZTP, and their metabolites in plasma using rapid and efficient liquid–liquid and solid phase extractions. Nucl Med Biol. 2003;30(3):233–40.PubMedCrossRef Ma Y, Kiesewetter DO, Lang L, Der M, Huang B, Carson RE, et al. Determination of [18F]FCWAY, [18F]FP-TZTP, and their metabolites in plasma using rapid and efficient liquid–liquid and solid phase extractions. Nucl Med Biol. 2003;30(3):233–40.PubMedCrossRef
4.
go back to reference Nakao R, Halldin C. Improved radiometabolite analysis procedure for positron emission tomography (PET) radioligands using a monolithic column coupled with direct injection micellar/high submicellar liquid chromatography. Talanta. 2013;113:130–4.PubMedCrossRef Nakao R, Halldin C. Improved radiometabolite analysis procedure for positron emission tomography (PET) radioligands using a monolithic column coupled with direct injection micellar/high submicellar liquid chromatography. Talanta. 2013;113:130–4.PubMedCrossRef
5.
go back to reference Robards K, Haddad PR, Jackson PE. Principles and practice of modern chromatographic methods. London: Academic Press; 1994. p. 1–32. Robards K, Haddad PR, Jackson PE. Principles and practice of modern chromatographic methods. London: Academic Press; 1994. p. 1–32.
6.
go back to reference Hilton J, Yokoi F, Dannals RF, Ravert HT, Szabo Z, Wong DF. Column-switching HPLC for the analysis of plasma in PET imaging studies. Nucl Med Biol. 2000;27(6):627–30.PubMedCrossRef Hilton J, Yokoi F, Dannals RF, Ravert HT, Szabo Z, Wong DF. Column-switching HPLC for the analysis of plasma in PET imaging studies. Nucl Med Biol. 2000;27(6):627–30.PubMedCrossRef
7.
go back to reference Takei M, Kida T, Suzuki K. Sensitive measurement of positron emitters eluted from HPLC. Appl Radiat Isot. 2001;55(2):229–34.PubMedCrossRef Takei M, Kida T, Suzuki K. Sensitive measurement of positron emitters eluted from HPLC. Appl Radiat Isot. 2001;55(2):229–34.PubMedCrossRef
8.
go back to reference Snyder F, Cress E. Application of thin-layer chromatographic zonal 14C-Profile scans to the analysis of urinary constituents derived from lipds. Clin Chem. 1968;14(6):529–34.PubMedCrossRef Snyder F, Cress E. Application of thin-layer chromatographic zonal 14C-Profile scans to the analysis of urinary constituents derived from lipds. Clin Chem. 1968;14(6):529–34.PubMedCrossRef
9.
go back to reference Marx AM, Kronberg H, Neuhoff V. Determination of the specific radioactivity of amino acids by a combination of thin-layer chromatography and quantitative autoradiography. J Chromatogr. 1987;393(19):407–17.PubMedCrossRef Marx AM, Kronberg H, Neuhoff V. Determination of the specific radioactivity of amino acids by a combination of thin-layer chromatography and quantitative autoradiography. J Chromatogr. 1987;393(19):407–17.PubMedCrossRef
10.
go back to reference Sardini P, Angileri A, Descostes M, Duval S, Oger T, Patrier P, et al. Quantitative autoradiography of alpha particle emission in geo-materials using the BeaverTM system. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. 2016;833:15–22.CrossRef Sardini P, Angileri A, Descostes M, Duval S, Oger T, Patrier P, et al. Quantitative autoradiography of alpha particle emission in geo-materials using the BeaverTM system. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. 2016;833:15–22.CrossRef
13.
go back to reference Donnard J, Arlicot N, Berny R, Carduner H, Leray P, Morteau E, et al. Advancements of labelled radio-pharmaceutics imaging with the PIM-MPGD. J Instrum. 2009;4(11):1–9.CrossRef Donnard J, Arlicot N, Berny R, Carduner H, Leray P, Morteau E, et al. Advancements of labelled radio-pharmaceutics imaging with the PIM-MPGD. J Instrum. 2009;4(11):1–9.CrossRef
14.
go back to reference Wilson AA, Garcia A, Parkes J, McCormick P, Stephenson KA, Houle S, et al. Radiosynthesis and initial evaluation of [18F]-FEPPA for PET imaging of peripheral benzodiazepine receptors. Nucl Med Biol. 2008;35(3):305–14.PubMedCrossRef Wilson AA, Garcia A, Parkes J, McCormick P, Stephenson KA, Houle S, et al. Radiosynthesis and initial evaluation of [18F]-FEPPA for PET imaging of peripheral benzodiazepine receptors. Nucl Med Biol. 2008;35(3):305–14.PubMedCrossRef
16.
go back to reference Yang DM, Palma D, Louie A, Malthaner R, Fortin D, Rodrigues G, et al. Assessment of tumour response after stereotactic ablative radiation therapy for lung cancer: a prospective quantitative hybrid 18 F-fluorodeoxyglucose-positron emission tomography and CT perfusion study. J Med Imaging Radiat Oncol. 2019;63(1):94–101.PubMedCrossRef Yang DM, Palma D, Louie A, Malthaner R, Fortin D, Rodrigues G, et al. Assessment of tumour response after stereotactic ablative radiation therapy for lung cancer: a prospective quantitative hybrid 18 F-fluorodeoxyglucose-positron emission tomography and CT perfusion study. J Med Imaging Radiat Oncol. 2019;63(1):94–101.PubMedCrossRef
17.
go back to reference Feng D, Huang S-C, Wang X. Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography. Int J Biomed Comput. 1993;32(2):95–110.CrossRefPubMed Feng D, Huang S-C, Wang X. Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography. Int J Biomed Comput. 1993;32(2):95–110.CrossRefPubMed
18.
go back to reference Ben Bouallègue F, Vauchot F, Mariano-Goulart D. Comparative assessment of linear least-squares, nonlinear least-squares, and Patlak graphical method for regional and local quantitative tracer kinetic modeling in cerebral dynamic 18 F-FDG PET. Med Phys. 2019;46(3):1260–71.PubMedCrossRef Ben Bouallègue F, Vauchot F, Mariano-Goulart D. Comparative assessment of linear least-squares, nonlinear least-squares, and Patlak graphical method for regional and local quantitative tracer kinetic modeling in cerebral dynamic 18 F-FDG PET. Med Phys. 2019;46(3):1260–71.PubMedCrossRef
19.
go back to reference Debus C, Afshar-Oromieh A, Floca R, Ingrisch M, Knoll M, Debus J, et al. Feasibility and robustness of dynamic 18F-FET PET based tracer kinetic models applied to patients with recurrent high-grade glioma prior to carbon ion irradiation. Sci Rep. 2018;8(1):1–17.CrossRef Debus C, Afshar-Oromieh A, Floca R, Ingrisch M, Knoll M, Debus J, et al. Feasibility and robustness of dynamic 18F-FET PET based tracer kinetic models applied to patients with recurrent high-grade glioma prior to carbon ion irradiation. Sci Rep. 2018;8(1):1–17.CrossRef
20.
go back to reference Jans HS, Yang XH, Brocks DR, Kumar P, Wuest M, Wiebe LI. Positron emission tomography (PET) and pharmacokinetics: classical blood sampling versus image-derived analysis of [18F]FAZA and [18F]FDG in a murine tumor bearing model. J Pharm Pharm Sci. 2018;21(1S):32s–47s.PubMedCrossRef Jans HS, Yang XH, Brocks DR, Kumar P, Wuest M, Wiebe LI. Positron emission tomography (PET) and pharmacokinetics: classical blood sampling versus image-derived analysis of [18F]FAZA and [18F]FDG in a murine tumor bearing model. J Pharm Pharm Sci. 2018;21(1S):32s–47s.PubMedCrossRef
21.
go back to reference Vignal N, Cisternino S, Rizzo-Padoin N, San C, Hontonnou F, Gelé T, et al. [18F]FEPPA a TSPO radioligand: optimized radiosynthesis and evaluation as a PET radiotracer for brain inflammation in a peripheral LPS-injected mouse model. Molecules. 2018;23(6):1375.PubMedCentralCrossRef Vignal N, Cisternino S, Rizzo-Padoin N, San C, Hontonnou F, Gelé T, et al. [18F]FEPPA a TSPO radioligand: optimized radiosynthesis and evaluation as a PET radiotracer for brain inflammation in a peripheral LPS-injected mouse model. Molecules. 2018;23(6):1375.PubMedCentralCrossRef
22.
go back to reference Rusjan PM, Wilson AA, Bloomfield PM, Vitcu I, Meyer JH, Houle S, et al. Quantitation of translocator protein binding in human brain with the novel radioligand 18F-FEPPA and positron emission tomography. J Cereb Blood Flow Metab. 2011;31(8):1807–16.PubMedPubMedCentralCrossRef Rusjan PM, Wilson AA, Bloomfield PM, Vitcu I, Meyer JH, Houle S, et al. Quantitation of translocator protein binding in human brain with the novel radioligand 18F-FEPPA and positron emission tomography. J Cereb Blood Flow Metab. 2011;31(8):1807–16.PubMedPubMedCentralCrossRef
23.
go back to reference Mizrahi R, Rusjan PM, Vitcu I, Ng A, Wilson AA, Houle S, et al. Whole body biodistribution and radiation dosimetry in humans of a new PET ligand, [18F]-FEPPA, to image translocator protein (18 kDa). Mol Imaging Biol. 2013;15(3):353–9.PubMedCrossRef Mizrahi R, Rusjan PM, Vitcu I, Ng A, Wilson AA, Houle S, et al. Whole body biodistribution and radiation dosimetry in humans of a new PET ligand, [18F]-FEPPA, to image translocator protein (18 kDa). Mol Imaging Biol. 2013;15(3):353–9.PubMedCrossRef
25.
go back to reference Savi A, Incerti E, Fallanca F, BettinarDi V, Rossetti F, Monterisi C, et al. First evaluation of PET-based human biodistribution and dosimetry of 18F-FAZA, a tracer for imaging tumor hypoxia. J Nucl Med. 2017;58(8):1224–9.PubMedCrossRef Savi A, Incerti E, Fallanca F, BettinarDi V, Rossetti F, Monterisi C, et al. First evaluation of PET-based human biodistribution and dosimetry of 18F-FAZA, a tracer for imaging tumor hypoxia. J Nucl Med. 2017;58(8):1224–9.PubMedCrossRef
26.
go back to reference Hinz R, Bhagwagar Z, Cowen PJ, Cunningham VJ, Grasby PM. Validation of a tracer kinetic model for the quantification of 5-HT 2A receptors in human brain with [11C]MDL 100,907. J Cereb Blood Flow Metab. 2007;27(1):161–72.PubMedCrossRef Hinz R, Bhagwagar Z, Cowen PJ, Cunningham VJ, Grasby PM. Validation of a tracer kinetic model for the quantification of 5-HT 2A receptors in human brain with [11C]MDL 100,907. J Cereb Blood Flow Metab. 2007;27(1):161–72.PubMedCrossRef
27.
go back to reference Henriksen G, Spilker M, Sprenger T, Hauser A, Platzer S, Boecker H, et al. Gender dependent rate of metabolism of the opiod receptor-PET ligand [18F]fluoroethyldiprenorphine. Nuklearmedizin. 2006;45(5):197–200.PubMedCrossRef Henriksen G, Spilker M, Sprenger T, Hauser A, Platzer S, Boecker H, et al. Gender dependent rate of metabolism of the opiod receptor-PET ligand [18F]fluoroethyldiprenorphine. Nuklearmedizin. 2006;45(5):197–200.PubMedCrossRef
28.
go back to reference Nunn A, Linder K, Strauss HW. Nitroimidazoles and imaging hypoxia. Eur J Nucl Med. 1995;22(3):265–80.PubMedCrossRef Nunn A, Linder K, Strauss HW. Nitroimidazoles and imaging hypoxia. Eur J Nucl Med. 1995;22(3):265–80.PubMedCrossRef
29.
go back to reference Anholt R, Pedersen P, De Souza E, Snyder S. The peripheral-type benzodiazepine receptor: localization to the mitochondrial outer membrane. J Biol Chem. 1986;261(2):576–83.PubMed Anholt R, Pedersen P, De Souza E, Snyder S. The peripheral-type benzodiazepine receptor: localization to the mitochondrial outer membrane. J Biol Chem. 1986;261(2):576–83.PubMed
30.
go back to reference Veiga S, Carrero P, Perna O, Azcotta I, Garcia-Segura L. Translocator protein (18 kDa) is involved in the regulation of reactive gliosis. Glia (Internet). 2007;55:1425–36. Veiga S, Carrero P, Perna O, Azcotta I, Garcia-Segura L. Translocator protein (18 kDa) is involved in the regulation of reactive gliosis. Glia (Internet). 2007;55:1425–36.
32.
33.
go back to reference Touchstone J. Practice of thin layer chromatography. 3rd ed. London: Wiley; 1992. Touchstone J. Practice of thin layer chromatography. 3rd ed. London: Wiley; 1992.
Metadata
Title
Plasma radio-metabolite analysis of PET tracers for dynamic PET imaging: TLC and autoradiography
Authors
Fiona Li
Justin W. Hicks
Lihai Yu
Lise Desjardin
Laura Morrison
Jennifer Hadway
Ting-Yim Lee
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2020
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-020-00705-2

Other articles of this Issue 1/2020

EJNMMI Research 1/2020 Go to the issue