Skip to main content
Top
Published in: EJNMMI Research 1/2020

Open Access 01-12-2020 | Positron Emission Tomography | Review

Dealing with PET radiometabolites

Authors: Krishna Kanta Ghosh, Parasuraman Padmanabhan, Chang-Tong Yang, Sachin Mishra, Christer Halldin, Balázs Gulyás

Published in: EJNMMI Research | Issue 1/2020

Login to get access

Abstract

Positron emission tomography (PET) offers the study of biochemical, physiological, and pharmacological functions at a cellular and molecular level. The performance of a PET study mostly depends on the used radiotracer of interest. However, the development of a novel PET tracer is very difficult, as it is required to fulfill a lot of important criteria. PET radiotracers usually encounter different chemical modifications including redox reaction, hydrolysis, decarboxylation, and various conjugation processes within living organisms. Due to this biotransformation, different chemical entities are produced, and the amount of the parent radiotracer is declined. Consequently, the signal measured by the PET scanner indicates the entire amount of radioactivity deposited in the tissue; however, it does not offer any indication about the chemical disposition of the parent radiotracer itself. From a radiopharmaceutical perspective, it is necessary to quantify the parent radiotracer’s fraction present in the tissue. Hence, the identification of radiometabolites of the radiotracers is vital for PET imaging. There are mainly two reasons for the chemical identification of PET radiometabolites: firstly, to determine the amount of parent radiotracers in plasma, and secondly, to rule out (if a radiometabolite enters the brain) or correct any radiometabolite accumulation in peripheral tissue. Besides, radiometabolite formations of the tracer might be of concern for the PET study, as the radiometabolic products may display considerably contrasting distribution patterns inside the body when compared with the radiotracer itself. Therefore, necessary information is needed about these biochemical transformations to understand the distribution of radioactivity throughout the body. Various published review articles on PET radiometabolites mainly focus on the sample preparation techniques and recently available technology to improve the radiometabolite analysis process. This article essentially summarizes the chemical and structural identity of the radiometabolites of various radiotracers including [11C]PBB3, [11C]flumazenil, [18F]FEPE2I, [11C]PBR28, [11C]MADAM, and (+)[18F]flubatine. Besides, the importance of radiometabolite analysis in PET imaging is also briefly summarized. Moreover, this review also highlights how a slight chemical modification could reduce the formation of radiometabolites, which could interfere with the results of PET imaging.

Graphical abstract

Literature
2.
go back to reference Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med. 1975;16:210–24.PubMed Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med. 1975;16:210–24.PubMed
3.
go back to reference Schöder H, Erdi YE, Larson SM, Yeung HW. PET/CT: a new imaging technology in nuclear medicine. Eur J Nucl Med Mol Imaging. 2003;30:1419–37.PubMed Schöder H, Erdi YE, Larson SM, Yeung HW. PET/CT: a new imaging technology in nuclear medicine. Eur J Nucl Med Mol Imaging. 2003;30:1419–37.PubMed
4.
go back to reference Halldin C, Gulyas B, Langer O, Farde L. Brain radioligands--state of the art and new trends. Quart J Nucl Med Mol Imaging. 2001;45:139. Halldin C, Gulyas B, Langer O, Farde L. Brain radioligands--state of the art and new trends. Quart J Nucl Med Mol Imaging. 2001;45:139.
5.
go back to reference Phelps ME. PET: molecular imaging and its biological applications: Springer Science & Business Media; 2004. Phelps ME. PET: molecular imaging and its biological applications: Springer Science & Business Media; 2004.
6.
go back to reference Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med. 2000;41:661–81.PubMed Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med. 2000;41:661–81.PubMed
8.
go back to reference Pike VW. PET radiotracers: crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol Sci. 2009;30:431–40.PubMedPubMedCentral Pike VW. PET radiotracers: crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol Sci. 2009;30:431–40.PubMedPubMedCentral
11.
go back to reference Comar D. PET for drug development and evaluation: Springer Science & Business Media; 2012. Comar D. PET for drug development and evaluation: Springer Science & Business Media; 2012.
12.
go back to reference Price JC, Lopresti BJ, Meltzer CC, Smith GS, Mason NS, Huang Y, et al. Analyses of [18F] altanserin bolus injection PET data. II: consideration of radiolabeled metabolites in humans. Synapse. 2001;41:11–21.PubMed Price JC, Lopresti BJ, Meltzer CC, Smith GS, Mason NS, Huang Y, et al. Analyses of [18F] altanserin bolus injection PET data. II: consideration of radiolabeled metabolites in humans. Synapse. 2001;41:11–21.PubMed
13.
go back to reference Williams RT. Detoxication mechanisms: the metabolism and detoxication of drugs, toxic substances, and other organic compounds: Wiley; 1959. Williams RT. Detoxication mechanisms: the metabolism and detoxication of drugs, toxic substances, and other organic compounds: Wiley; 1959.
14.
go back to reference Silverman RB. Medizinische Chemie für Organiker, Biochemiker und Pharmazeutische Chemiker; 1995. Silverman RB. Medizinische Chemie für Organiker, Biochemiker und Pharmazeutische Chemiker; 1995.
15.
go back to reference Petrides GLaPE. Biochemie und Pathobiochemie: Springer; 1998. Petrides GLaPE. Biochemie und Pathobiochemie: Springer; 1998.
18.
go back to reference Wolff ME. Burger’s medicinal chemistry and drug discovery. Am J Ther. 1996;3:608. Wolff ME. Burger’s medicinal chemistry and drug discovery. Am J Ther. 1996;3:608.
19.
go back to reference Mazière B, Cantineau R, Coenen HH, Guillaume M, Halldin C, Luxen A, et al. PET radiopharmaceutical metabolism—plasma metabolite analysis. Radiopharmaceuticals for positron emission tomography: Springer; 1993. p. 151–78. Mazière B, Cantineau R, Coenen HH, Guillaume M, Halldin C, Luxen A, et al. PET radiopharmaceutical metabolism—plasma metabolite analysis. Radiopharmaceuticals for positron emission tomography: Springer; 1993. p. 151–78.
20.
go back to reference Frullano L, Catana C, Benner T, Sherry AD, Caravan P. Bimodal MR–PET agent for quantitative pH imaging. Angew Chem. 2010;122:2432–4. Frullano L, Catana C, Benner T, Sherry AD, Caravan P. Bimodal MR–PET agent for quantitative pH imaging. Angew Chem. 2010;122:2432–4.
22.
go back to reference Osman S, Lundkvist C, Pike VW, Halldin C, McCarron JA, Swahn C-G, et al. Characterization of the radioactive metabolites of the 5-HT1A receptor radioligand,[O-methl-11C] WAY-100635, in monkey and human plasma by HPLC: comparison of the behaviour of an identified radioactive metabolite with parent radioligand in monkey using PET. Nucl Med Biol. 1996;23:627–34.PubMed Osman S, Lundkvist C, Pike VW, Halldin C, McCarron JA, Swahn C-G, et al. Characterization of the radioactive metabolites of the 5-HT1A receptor radioligand,[O-methl-11C] WAY-100635, in monkey and human plasma by HPLC: comparison of the behaviour of an identified radioactive metabolite with parent radioligand in monkey using PET. Nucl Med Biol. 1996;23:627–34.PubMed
23.
go back to reference Osman S, Lundkvist C, Pike VW, Halldin C, McCarron JA, Swahn C-G, et al. Characterisation of the appearance of radioactive metabolites in monkey and human plasma from the 5-HT1A receptor radioligand,[carbonyl-11C] WAY-100635—explanation of high signal contrast in PET and an aid to biomathematical modelling. Nucl Med Biol. 1998;25:215–23.PubMed Osman S, Lundkvist C, Pike VW, Halldin C, McCarron JA, Swahn C-G, et al. Characterisation of the appearance of radioactive metabolites in monkey and human plasma from the 5-HT1A receptor radioligand,[carbonyl-11C] WAY-100635—explanation of high signal contrast in PET and an aid to biomathematical modelling. Nucl Med Biol. 1998;25:215–23.PubMed
24.
go back to reference Nakao R, Halldin C. A simplified radiometabolite analysis procedure for PET radioligands using a solid phase extraction with micellar medium. Nucl Med Biol. 2013;40:658–63.PubMed Nakao R, Halldin C. A simplified radiometabolite analysis procedure for PET radioligands using a solid phase extraction with micellar medium. Nucl Med Biol. 2013;40:658–63.PubMed
25.
go back to reference Moein MM, Nakao R, Amini N, Abdel-Rehim M, Schou M, Halldin C. Sample preparation techniques for radiometabolite analysis of positron emission tomography radioligands; trends, progress, limitations and future prospects. TrAC Trends Anal Chem. 2019;110:1–7. Moein MM, Nakao R, Amini N, Abdel-Rehim M, Schou M, Halldin C. Sample preparation techniques for radiometabolite analysis of positron emission tomography radioligands; trends, progress, limitations and future prospects. TrAC Trends Anal Chem. 2019;110:1–7.
27.
go back to reference Carson RE. Tracer kinetic modeling in PET. Positron emission tomography: Springer; 2005. p. 127–59. Carson RE. Tracer kinetic modeling in PET. Positron emission tomography: Springer; 2005. p. 127–59.
28.
go back to reference Ishiwata K, Itou T, Ohyama M, Yamada T, Mishina M, Ishii K, et al. Metabolite analysis of [11 C] flumazenil in human plasma: assessment as the standardized value for quantitative PET studies. Ann Nucl Med. 1998;12:55–9.PubMed Ishiwata K, Itou T, Ohyama M, Yamada T, Mishina M, Ishii K, et al. Metabolite analysis of [11 C] flumazenil in human plasma: assessment as the standardized value for quantitative PET studies. Ann Nucl Med. 1998;12:55–9.PubMed
29.
go back to reference Kalgutkar AS, Nguyen HT. Identification of an N-methyl-4-phenylpyridinium-like metabolite of the antidiarrheal agent loperamide in human liver microsomes: underlying reason(s) for the lack of neurotoxicity despite the bioactivation event. Drug Metab Dispos. 2004;32:943–52.PubMed Kalgutkar AS, Nguyen HT. Identification of an N-methyl-4-phenylpyridinium-like metabolite of the antidiarrheal agent loperamide in human liver microsomes: underlying reason(s) for the lack of neurotoxicity despite the bioactivation event. Drug Metab Dispos. 2004;32:943–52.PubMed
30.
go back to reference Zoghbi SS, Branch MI. 11 C-Loperamide and its N-desmethyl radiometabolite are avid substrates for brain P-glycoprotein efflux. J Nucl Med. 2007;48:248P. Zoghbi SS, Branch MI. 11 C-Loperamide and its N-desmethyl radiometabolite are avid substrates for brain P-glycoprotein efflux. J Nucl Med. 2007;48:248P.
35.
go back to reference Giron MC, Portolan S, Bin A, Mazzi U, Cutler CS. Cytochrome P450 and radiopharmaceutical metabolism. Q J Nucl Med Mol Imaging. 2008;52:254–66.PubMed Giron MC, Portolan S, Bin A, Mazzi U, Cutler CS. Cytochrome P450 and radiopharmaceutical metabolism. Q J Nucl Med Mol Imaging. 2008;52:254–66.PubMed
38.
go back to reference Nakao R, Halldin C. Improved radiometabolite analysis procedure for positron emission tomography (PET) radioligands using a monolithic column coupled with direct injection micellar/high submicellar liquid chromatography. Talanta. 2013;113:130–4.PubMed Nakao R, Halldin C. Improved radiometabolite analysis procedure for positron emission tomography (PET) radioligands using a monolithic column coupled with direct injection micellar/high submicellar liquid chromatography. Talanta. 2013;113:130–4.PubMed
39.
go back to reference Buchholz M, Spahn I, Coenen HH. Optimized separation procedure for production of no-carrier-added radiomanganese for positron emission tomography. Radiochim Acta. 2015;103:893–9. Buchholz M, Spahn I, Coenen HH. Optimized separation procedure for production of no-carrier-added radiomanganese for positron emission tomography. Radiochim Acta. 2015;103:893–9.
41.
44.
go back to reference Kenk M, Greene M, Lortie M, DeKemp RA, Beanlands RS, DaSilva JN. Use of a column-switching high-performance liquid chromatography method to assess the presence of specific binding of (R)-and (S)-[11C] rolipram and their labeled metabolites to the phosphodiesterase-4 enzyme in rat plasma and tissues. Nucl Med Biol. 2008;35:515–21.PubMed Kenk M, Greene M, Lortie M, DeKemp RA, Beanlands RS, DaSilva JN. Use of a column-switching high-performance liquid chromatography method to assess the presence of specific binding of (R)-and (S)-[11C] rolipram and their labeled metabolites to the phosphodiesterase-4 enzyme in rat plasma and tissues. Nucl Med Biol. 2008;35:515–21.PubMed
46.
go back to reference Nakao R, Halldin C. “Mixed” anionic and non-ionic micellar liquid chromatography for high-speed radiometabolite analysis of positron emission tomography radioligands. J Chromatogr A. 2013;1281:54–9.PubMed Nakao R, Halldin C. “Mixed” anionic and non-ionic micellar liquid chromatography for high-speed radiometabolite analysis of positron emission tomography radioligands. J Chromatogr A. 2013;1281:54–9.PubMed
47.
go back to reference Farde L, Eriksson L, Blomquist G, Halldin C. Kinetic analysis of central [11C] raclopride binding to D2-dopamine receptors studied by PET—a comparison to the equilibrium analysis. J Cereb Blood Flow Metab. 1989;9:696–708.PubMed Farde L, Eriksson L, Blomquist G, Halldin C. Kinetic analysis of central [11C] raclopride binding to D2-dopamine receptors studied by PET—a comparison to the equilibrium analysis. J Cereb Blood Flow Metab. 1989;9:696–708.PubMed
50.
go back to reference Wood H. Alzheimer disease:[11 C] PBB3—a new PET ligand that identifies tau pathology in the brains of patients with AD. Nat Rev Neurol. 2013;9:599.PubMed Wood H. Alzheimer disease:[11 C] PBB3—a new PET ligand that identifies tau pathology in the brains of patients with AD. Nat Rev Neurol. 2013;9:599.PubMed
51.
go back to reference Hashimoto H, Kawamura K, Igarashi N, Takei M, Fujishiro T, Aihara Y, et al. Radiosynthesis, photoisomerization, biodistribution, and metabolite analysis of 11C-PBB3 as a clinically useful PET probe for imaging of tau pathology. J Nucl Med. 2014;55:1532–8.PubMed Hashimoto H, Kawamura K, Igarashi N, Takei M, Fujishiro T, Aihara Y, et al. Radiosynthesis, photoisomerization, biodistribution, and metabolite analysis of 11C-PBB3 as a clinically useful PET probe for imaging of tau pathology. J Nucl Med. 2014;55:1532–8.PubMed
54.
go back to reference Amini N, Nakao R, Schou M, Halldin C. Identification of PET radiometabolites by cytochrome P450, UHPLC/Q-ToF-MS and fast radio-LC: applied to the PET radioligands [11 C] flumazenil,[18 F] FE-PE2I, and [11 C] PBR28. Anal Bioanal Chem. 2013;405:1303–10.PubMed Amini N, Nakao R, Schou M, Halldin C. Identification of PET radiometabolites by cytochrome P450, UHPLC/Q-ToF-MS and fast radio-LC: applied to the PET radioligands [11 C] flumazenil,[18 F] FE-PE2I, and [11 C] PBR28. Anal Bioanal Chem. 2013;405:1303–10.PubMed
55.
go back to reference Levêque P, Labar D, de Hoffmann EB. Gallez Assesment of [18F]-fluoroethylflumazenil metabolites using HPLC and tandem mass spectrometry. J Chromatogr B. 2001;754:35–44. Levêque P, Labar D, de Hoffmann EB. Gallez Assesment of [18F]-fluoroethylflumazenil metabolites using HPLC and tandem mass spectrometry. J Chromatogr B. 2001;754:35–44.
56.
go back to reference Halldin C, Stone-Elander S, Thorell J-O, Persson A, Sedvall G. 11C-labelling of Ro 15-1788 in two different positions, and also 11C-labelling of its main metabolite Ro 15-3890, for PET studies of benzodiazepine receptors. Int J Rad Appl Inst Part A Appl Rad Isotopes. 1988;39:993–7. Halldin C, Stone-Elander S, Thorell J-O, Persson A, Sedvall G. 11C-labelling of Ro 15-1788 in two different positions, and also 11C-labelling of its main metabolite Ro 15-3890, for PET studies of benzodiazepine receptors. Int J Rad Appl Inst Part A Appl Rad Isotopes. 1988;39:993–7.
57.
go back to reference Persson A, Pauli S, Swahn C, Halldin C, Sedvall G. Cerebral uptake of 11C—Ro 15—1788 and its acid metabolite 11C—Ro 15—3890; PET study in healthy volunteers. Hum Psychopharmacol Clin Exp. 1989;4:215–20. Persson A, Pauli S, Swahn C, Halldin C, Sedvall G. Cerebral uptake of 11C—Ro 15—1788 and its acid metabolite 11C—Ro 15—3890; PET study in healthy volunteers. Hum Psychopharmacol Clin Exp. 1989;4:215–20.
58.
go back to reference Swahn CG, Persson A, Pauli S. Metabolism of the benzodiazepine antagonist 11C-Ro 15-1788 after intravenous administration in man. Hum Psychopharmacol Clin Exp. 1989;4:297–301. Swahn CG, Persson A, Pauli S. Metabolism of the benzodiazepine antagonist 11C-Ro 15-1788 after intravenous administration in man. Hum Psychopharmacol Clin Exp. 1989;4:297–301.
59.
go back to reference Debruyne D, Abadie P, Barre L, Albessard F, Moulin M, Zarlfian E, et al. Plasma pharmacokinetics and metabolism of the benzodiazepine antagonist [11 C] Ro 15-1788 (flumazenil) in baboon and human during positron emission tomography studies. Eur J Drug Metab Pharmacokinet. 1991;16:141–52.PubMed Debruyne D, Abadie P, Barre L, Albessard F, Moulin M, Zarlfian E, et al. Plasma pharmacokinetics and metabolism of the benzodiazepine antagonist [11 C] Ro 15-1788 (flumazenil) in baboon and human during positron emission tomography studies. Eur J Drug Metab Pharmacokinet. 1991;16:141–52.PubMed
61.
65.
go back to reference Somers GI, Harris AJ, Bayliss MK, Houston JB. The metabolism of the 5HT3 antagonists ondansetron, alosetron and GR87442 I: a comparison of in vitro and in vivo metabolism and in vitro enzyme kinetics in rat, dog and human hepatocytes, microsomes and recombinant human enzymes. Xenobiotica. 2007;37:832–54. https://doi.org/10.1080/00498250701485575.CrossRefPubMed Somers GI, Harris AJ, Bayliss MK, Houston JB. The metabolism of the 5HT3 antagonists ondansetron, alosetron and GR87442 I: a comparison of in vitro and in vivo metabolism and in vitro enzyme kinetics in rat, dog and human hepatocytes, microsomes and recombinant human enzymes. Xenobiotica. 2007;37:832–54. https://​doi.​org/​10.​1080/​0049825070148557​5.CrossRefPubMed
67.
go back to reference Halldin C, Lundberg J, Sóvágó J, Gulyás B, Guilloteau D, Vercouillie J, et al. [11C] MADAM, a new serotonin transporter radioligand characterized in the monkey brain by PET. Synapse. 2005;58:173–83.PubMed Halldin C, Lundberg J, Sóvágó J, Gulyás B, Guilloteau D, Vercouillie J, et al. [11C] MADAM, a new serotonin transporter radioligand characterized in the monkey brain by PET. Synapse. 2005;58:173–83.PubMed
68.
go back to reference Lundberg J, Odano I, Olsson H, Halldin C, Farde L. Quantification of 11C-MADAM binding to the serotonin transporter in the human brain. J Nucl Med. 2005;46:1505–15.PubMed Lundberg J, Odano I, Olsson H, Halldin C, Farde L. Quantification of 11C-MADAM binding to the serotonin transporter in the human brain. J Nucl Med. 2005;46:1505–15.PubMed
69.
go back to reference Gourand F, Amini N, Jia Z, Stone-Elander S, Guilloteau D, Barré L, et al. [11C] MADAM used as a model for understanding the radiometabolism of diphenyl sulfide radioligands for positron emission tomography (PET). PLoS One. 2015;10:e0137160.PubMedPubMedCentral Gourand F, Amini N, Jia Z, Stone-Elander S, Guilloteau D, Barré L, et al. [11C] MADAM used as a model for understanding the radiometabolism of diphenyl sulfide radioligands for positron emission tomography (PET). PLoS One. 2015;10:e0137160.PubMedPubMedCentral
70.
go back to reference Smits R, Fischer S, Hiller A, Deuther-Conrad W, Wenzel B, Patt M, et al. Synthesis and biological evaluation of both enantiomers of [18F] flubatine, promising radiotracers with fast kinetics for the imaging of α4β2-nicotinic acetylcholine receptors. Bioorg Med Chem. 2014;22:804–12.PubMed Smits R, Fischer S, Hiller A, Deuther-Conrad W, Wenzel B, Patt M, et al. Synthesis and biological evaluation of both enantiomers of [18F] flubatine, promising radiotracers with fast kinetics for the imaging of α4β2-nicotinic acetylcholine receptors. Bioorg Med Chem. 2014;22:804–12.PubMed
73.
go back to reference Hillmer AT, Esterlis I, Gallezot J-D, Bois F, Zheng M-Q, Nabulsi N, et al. Imaging of cerebral α4β2* nicotinic acetylcholine receptors with (−)-[18F] Flubatine PET: Implementation of bolus plus constant infusion and sensitivity to acetylcholine in human brain. NeuroImage. 2016;141:71–80.PubMedPubMedCentral Hillmer AT, Esterlis I, Gallezot J-D, Bois F, Zheng M-Q, Nabulsi N, et al. Imaging of cerebral α4β2* nicotinic acetylcholine receptors with (−)-[18F] Flubatine PET: Implementation of bolus plus constant infusion and sensitivity to acetylcholine in human brain. NeuroImage. 2016;141:71–80.PubMedPubMedCentral
74.
go back to reference Ludwig F-A, Smits R, Fischer S, Donat C, Hoepping A, Brust P, et al. LC-MS supported studies on the in vitro metabolism of both enantiomers of flubatine and the in vivo metabolism of (+)-[18F] flubatine—a positron emission tomography radioligand for imaging α4β2 nicotinic acetylcholine receptors. Molecules. 2016;21:1200.PubMedCentral Ludwig F-A, Smits R, Fischer S, Donat C, Hoepping A, Brust P, et al. LC-MS supported studies on the in vitro metabolism of both enantiomers of flubatine and the in vivo metabolism of (+)-[18F] flubatine—a positron emission tomography radioligand for imaging α4β2 nicotinic acetylcholine receptors. Molecules. 2016;21:1200.PubMedCentral
76.
go back to reference Gallezot JD, Esterlis I, Bois F, Zheng MQ, Lin SF, Kloczynski T, et al. Evaluation of the sensitivity of the novel α4β2* nicotinic acetylcholine receptor PET radioligand 18F-(-)-NCFHEB to increases in synaptic acetylcholine levels in rhesus monkeys. Synapse. 2014;68:556–64.PubMedPubMedCentral Gallezot JD, Esterlis I, Bois F, Zheng MQ, Lin SF, Kloczynski T, et al. Evaluation of the sensitivity of the novel α4β2* nicotinic acetylcholine receptor PET radioligand 18F-(-)-NCFHEB to increases in synaptic acetylcholine levels in rhesus monkeys. Synapse. 2014;68:556–64.PubMedPubMedCentral
77.
go back to reference Bois F, Gallezot J-D, Zheng M-Q, Lin S-F, Esterlis I, Cosgrove KP, et al. Evaluation of [18F]-(-)-norchlorofluorohomoepibatidine ([18F]-(-)-NCFHEB) as a PET radioligand to image the nicotinic acetylcholine receptors in non-human primates. Nucl Med Biol. 2015;42:570–7.PubMed Bois F, Gallezot J-D, Zheng M-Q, Lin S-F, Esterlis I, Cosgrove KP, et al. Evaluation of [18F]-(-)-norchlorofluorohomoepibatidine ([18F]-(-)-NCFHEB) as a PET radioligand to image the nicotinic acetylcholine receptors in non-human primates. Nucl Med Biol. 2015;42:570–7.PubMed
78.
go back to reference Sabri O, Becker G-A, Meyer PM, Hesse S, Wilke S, Graef S, et al. First-in-human PET quantification study of cerebral α4β2* nicotinic acetylcholine receptors using the novel specific radioligand (−)-[18F] Flubatine. Neuroimage. 2015;118:199–208.PubMed Sabri O, Becker G-A, Meyer PM, Hesse S, Wilke S, Graef S, et al. First-in-human PET quantification study of cerebral α4β2* nicotinic acetylcholine receptors using the novel specific radioligand (−)-[18F] Flubatine. Neuroimage. 2015;118:199–208.PubMed
79.
go back to reference Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med. 1998;39:990–5.PubMed Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med. 1998;39:990–5.PubMed
80.
go back to reference Hara T, Kosaka N, Shinoura N, Kondo T. PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med. 1997;38:842–7.PubMed Hara T, Kosaka N, Shinoura N, Kondo T. PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med. 1997;38:842–7.PubMed
81.
go back to reference Smith G, Zhao Y, Leyton J, Shan B, Perumal M, Turton D, et al. Radiosynthesis and pre-clinical evaluation of [18F] fluoro-[1, 2-2H4] choline. Nucl Med Biol. 2011;38:39–51.PubMed Smith G, Zhao Y, Leyton J, Shan B, Perumal M, Turton D, et al. Radiosynthesis and pre-clinical evaluation of [18F] fluoro-[1, 2-2H4] choline. Nucl Med Biol. 2011;38:39–51.PubMed
83.
go back to reference Schou M, Halldin C, Sóvágó J, Pike VW, Hall H, Gulyás B, et al. PET evaluation of novel radiofluorinated reboxetine analogs as norepinephrine transporter probes in the monkey brain. Synapse. 2004;53:57–67.PubMed Schou M, Halldin C, Sóvágó J, Pike VW, Hall H, Gulyás B, et al. PET evaluation of novel radiofluorinated reboxetine analogs as norepinephrine transporter probes in the monkey brain. Synapse. 2004;53:57–67.PubMed
84.
go back to reference Terry GE, Liow J-S, Zoghbi SS, Hirvonen J, Farris AG, Lerner A, et al. Quantitation of cannabinoid CB1 receptors in healthy human brain using positron emission tomography and an inverse agonist radioligand. Neuroimage. 2009;48:362–70.PubMedPubMedCentral Terry GE, Liow J-S, Zoghbi SS, Hirvonen J, Farris AG, Lerner A, et al. Quantitation of cannabinoid CB1 receptors in healthy human brain using positron emission tomography and an inverse agonist radioligand. Neuroimage. 2009;48:362–70.PubMedPubMedCentral
85.
go back to reference Terry GE, Hirvonen J, Liow J-S, Zoghbi SS, Gladding R, Tauscher JT, et al. Imaging and quantitation of cannabinoid CB1 receptors in human and monkey brains using 18F-labeled inverse agonist radioligands. J Nucl Med. 2010;51:112–20.PubMed Terry GE, Hirvonen J, Liow J-S, Zoghbi SS, Gladding R, Tauscher JT, et al. Imaging and quantitation of cannabinoid CB1 receptors in human and monkey brains using 18F-labeled inverse agonist radioligands. J Nucl Med. 2010;51:112–20.PubMed
Metadata
Title
Dealing with PET radiometabolites
Authors
Krishna Kanta Ghosh
Parasuraman Padmanabhan
Chang-Tong Yang
Sachin Mishra
Christer Halldin
Balázs Gulyás
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2020
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-020-00692-4

Other articles of this Issue 1/2020

EJNMMI Research 1/2020 Go to the issue