Skip to main content
Top
Published in: EJNMMI Research 1/2020

01-12-2020 | Positron Emission Tomography | Original research

Automated synthesis, preclinical toxicity, and radiation dosimetry of [18F]MC225 for clinical use: a tracer for measuring P-glycoprotein function at the blood-brain barrier

Authors: Jun Toyohara, Muneyuki Sakata, Tetsuro Tago, Nicola A. Colabufo, Gert Luurtsema

Published in: EJNMMI Research | Issue 1/2020

Login to get access

Abstract

Introduction

[18F]MC225 is a selective substrate for P-glycoprotein (P-gp) that has good metabolic stability and shows higher baseline uptake compared with other P-gp substrates such as (R)-[11C]Verapamil. Prior to clinical translation, it is necessary to perform process validation of the radiosynthesis, assessment of preclinical toxicity, and radiation dosimetry.

Methods

The production of [18F]MC225 was automated on a CFN-MPS200 multipurpose synthesizer. The acute toxicity of MC225 was evaluated at a dose of 2.5 mg/kg bodyweight, which is more than 10,000-fold the postulated maximum clinical dose of [18F]MC225. The acute toxicity of [18F]MC225 injection at a 200-fold dose, to administer a postulated dose of 185 MBq of [18F]MC225, was also evaluated after the decay-out of 18F. The mutagenicity of MC225 was studied by a reverse mutation test using Salmonella typhimurium and Escherichia coli (Ames test). In vivo biodistribution and dosimetry studies of [18F]MC225 were carried out in normal mice. Human dosimetry was estimated using OLINDA software.

Results

The mean decay-corrected yields of [18F]MC225 at end of synthesis were 13%, with > 99% radiochemical purity, > 1000 GBq/μmol molar activity, and ≤ 1.5 μg/185 MBq of total chemical contents. All process validation batches complied with the product specifications and the process was confirmed to be appropriate for the production of [18F]MC225. No acute toxicity of MC225 or [18F]MC225 injection was found. No mutagenic activity was observed for MC225. The biodistribution study demonstrated both hepatobiliary and renal excretion of radioactivity. The most critical organ was the pancreas, with (63.8 μGy/MBq) or without urination (63.9 μGy/MBq) at 360 min after injection. The estimated effective dose (μSv/MBq) with and without urination at 360 min after injection was calculated as 15.7 and 16.9, respectively.

Conclusion

[18F]MC225 shows acceptable pharmacological safety at the dose required for adequate PET imaging. The potential risk associated with [18F]MC225 PET imaging is well within acceptable dose limits.
Literature
1.
go back to reference Terasaki T, Ohtsuki S. Brain-to-blood transporters for endogenous substrates and xenobiotics at the blood-brain barrier: an overview of biology, and methodology. NeuroRx. 2005;2:63–72.CrossRef Terasaki T, Ohtsuki S. Brain-to-blood transporters for endogenous substrates and xenobiotics at the blood-brain barrier: an overview of biology, and methodology. NeuroRx. 2005;2:63–72.CrossRef
2.
go back to reference Giacomini KM, Huang S-M. Transporters in drug development and clinical pharmacology. Clin Pharmacol Ther. 2013;94:3–9.CrossRef Giacomini KM, Huang S-M. Transporters in drug development and clinical pharmacology. Clin Pharmacol Ther. 2013;94:3–9.CrossRef
3.
go back to reference Graff CL, Pollack GM. Drug transport at the blood-brain barrier and the choroid plexus. Curr Drug Metab. 2004;5:95–108.CrossRef Graff CL, Pollack GM. Drug transport at the blood-brain barrier and the choroid plexus. Curr Drug Metab. 2004;5:95–108.CrossRef
4.
go back to reference Löscher W, Postchka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci. 2005;6:591–602.CrossRef Löscher W, Postchka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci. 2005;6:591–602.CrossRef
5.
go back to reference Feldmann M, Koepp M. ABC transporters and drug resistance in patients with epilepsy. Curr Pharm Des. 2016;22:5793–807.CrossRef Feldmann M, Koepp M. ABC transporters and drug resistance in patients with epilepsy. Curr Pharm Des. 2016;22:5793–807.CrossRef
6.
go back to reference Bauer M, Karch R, Zeitlinger M, Liu J, Koepp MJ, Asselin M-C, Sisodiya SM, Hainfellner JA, Wasdak W, Mitterhauser M, Müller M, Pataraia E, Langer O. In vivo P-glycoprotein function before and after epilepsy surgery. Neurology. 2014;83:1326–31.CrossRef Bauer M, Karch R, Zeitlinger M, Liu J, Koepp MJ, Asselin M-C, Sisodiya SM, Hainfellner JA, Wasdak W, Mitterhauser M, Müller M, Pataraia E, Langer O. In vivo P-glycoprotein function before and after epilepsy surgery. Neurology. 2014;83:1326–31.CrossRef
7.
go back to reference Feldman M, Asselin M-C, Liu J, Wang S, McMahon A, Anton-Rodriguez J, Walker M, Symms M, Brown G, Hinz R, Matthews J, Bauer M, Langer O, Thom M, Jones T, Vollmar C, Duncan JS, Sisodiya SM, Koepp MJ. P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study. Lancet Neurol. 2013;12:777–85.CrossRef Feldman M, Asselin M-C, Liu J, Wang S, McMahon A, Anton-Rodriguez J, Walker M, Symms M, Brown G, Hinz R, Matthews J, Bauer M, Langer O, Thom M, Jones T, Vollmar C, Duncan JS, Sisodiya SM, Koepp MJ. P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study. Lancet Neurol. 2013;12:777–85.CrossRef
8.
go back to reference Volk HA, Löscher W. Multidrug resistance in epilepsy: rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures. Brain. 2005;128:1358–68.CrossRef Volk HA, Löscher W. Multidrug resistance in epilepsy: rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures. Brain. 2005;128:1358–68.CrossRef
9.
go back to reference O’Brien FE, Clarke G, Fitzgerald P, Dinan TG, Griffin BT, Cryan JF. Inhibition of P-glycoprotein enhances transport of imipramine across the blood-brain barrier: microdialysis studies in conscious freely moving rats. Br J Pharmacol. 2012;166:1333–43.CrossRef O’Brien FE, Clarke G, Fitzgerald P, Dinan TG, Griffin BT, Cryan JF. Inhibition of P-glycoprotein enhances transport of imipramine across the blood-brain barrier: microdialysis studies in conscious freely moving rats. Br J Pharmacol. 2012;166:1333–43.CrossRef
10.
go back to reference de Klerk OL, Willemsen AT, Roosink M, Bartels AL, Hendrikse NH, Bosker FJ, den Boer JA. Locally increased P-glycoprotein function in major depression: a PET study with [11C]verapamil as a probe for P-glycoprotein function in the blood-brain barrier. Int J Neuropsychopharmacol. 2009;12:895–904.CrossRef de Klerk OL, Willemsen AT, Roosink M, Bartels AL, Hendrikse NH, Bosker FJ, den Boer JA. Locally increased P-glycoprotein function in major depression: a PET study with [11C]verapamil as a probe for P-glycoprotein function in the blood-brain barrier. Int J Neuropsychopharmacol. 2009;12:895–904.CrossRef
11.
go back to reference Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, Wilkinson GR. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-protease inhibitors. J Clin Invest. 1998;101:289–94.CrossRef Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, Wilkinson GR. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-protease inhibitors. J Clin Invest. 1998;101:289–94.CrossRef
12.
go back to reference Robillard KR, Chan GNY, Zhang G, la Porte C, Cameron W, Bendayan R. Role of P-glycoprotein in the distribution of the HIV protease inhibitor atazanavir in the brain and male genital tract. Antimicrob Agents Chemother. 2014;58:1713–22.CrossRef Robillard KR, Chan GNY, Zhang G, la Porte C, Cameron W, Bendayan R. Role of P-glycoprotein in the distribution of the HIV protease inhibitor atazanavir in the brain and male genital tract. Antimicrob Agents Chemother. 2014;58:1713–22.CrossRef
13.
go back to reference Shaik N, Giri N, Pan G, Elmquist WF. P-glycoprotein-mediated active efflux of the anti-HIV1 nucleoside abacavir limits cellular accumulation and brain distribution. Drug Metab Dispos. 2007;35:2076–85.CrossRef Shaik N, Giri N, Pan G, Elmquist WF. P-glycoprotein-mediated active efflux of the anti-HIV1 nucleoside abacavir limits cellular accumulation and brain distribution. Drug Metab Dispos. 2007;35:2076–85.CrossRef
14.
go back to reference Chai AB, Leung GKF, Callaghan R, Gelissen IC. P-glycoprotein: a role in the export of amyloid-β in Alzheimer's disease? FEBS J. 2020;287:612–25.CrossRef Chai AB, Leung GKF, Callaghan R, Gelissen IC. P-glycoprotein: a role in the export of amyloid-β in Alzheimer's disease? FEBS J. 2020;287:612–25.CrossRef
15.
go back to reference Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman JR. Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science. 2010;330:1774.CrossRef Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman JR. Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science. 2010;330:1774.CrossRef
16.
go back to reference Vogelgesang S, Cascorbi I, Schroeder E, Pahnke J, Kroemer HK, Siegmund W, Kunert-Keil C, Walker LC, Warzok RW. Deposition of Alzheimer’s β-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics. 2002;12:533–41.CrossRef Vogelgesang S, Cascorbi I, Schroeder E, Pahnke J, Kroemer HK, Siegmund W, Kunert-Keil C, Walker LC, Warzok RW. Deposition of Alzheimer’s β-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics. 2002;12:533–41.CrossRef
17.
go back to reference Wijesuriya HC, Bullock JY, Faull RLM, Hladky SB, Barrand MA. ABC efflux transporters in brain vasculature of Alzheimer’s subjects. Brain Res. 2010;1358:228–38.CrossRef Wijesuriya HC, Bullock JY, Faull RLM, Hladky SB, Barrand MA. ABC efflux transporters in brain vasculature of Alzheimer’s subjects. Brain Res. 2010;1358:228–38.CrossRef
18.
go back to reference Deo AK, Borson S, Link JM, Domino K, Eary JF, Ke B, Richards TL, Mankoff DA, Minoshima S, O’Sullivan F, Eyal S, Hsiao P, Maravilla K, Unadkat JD. Activity of p-glycoprotein, a β-amyloid transporter at the blood-brain barrier, is compromised in patients with mild Alzheimer disease. J Nucl Med. 2014;55:1106–11.CrossRef Deo AK, Borson S, Link JM, Domino K, Eary JF, Ke B, Richards TL, Mankoff DA, Minoshima S, O’Sullivan F, Eyal S, Hsiao P, Maravilla K, Unadkat JD. Activity of p-glycoprotein, a β-amyloid transporter at the blood-brain barrier, is compromised in patients with mild Alzheimer disease. J Nucl Med. 2014;55:1106–11.CrossRef
19.
go back to reference van Assema DME, Lubberink M, Bauer M, van der Filer WM, Schuit RC, Windhorst AD, Comans EFI, Hoetjes NJ, Tolboom N, Langer O, Müller M, Scheltens P, Lammertsma AA, van Berckel BNM. Blood-brain barrier P-glycoprotein function in Alzheimer’s disease. Brain. 2012;135:181–9.CrossRef van Assema DME, Lubberink M, Bauer M, van der Filer WM, Schuit RC, Windhorst AD, Comans EFI, Hoetjes NJ, Tolboom N, Langer O, Müller M, Scheltens P, Lammertsma AA, van Berckel BNM. Blood-brain barrier P-glycoprotein function in Alzheimer’s disease. Brain. 2012;135:181–9.CrossRef
20.
go back to reference Zoufal V, Mairinger S, Brackhan M, Krohn M, Filip T, Sauberer M, Stanek J, Wanek T, Tournier N, Bauer M, Pahnke J, Langer O. Imaging P-glycoprotein induction at the blood-brain barrier of a beta-amyloidosis mouse model with 11C-metoclopramide PET. J Nucl Med. 2019 Dec 5. jnumed.119.237198. doi: 10.2967/jnumed.119.237198. Zoufal V, Mairinger S, Brackhan M, Krohn M, Filip T, Sauberer M, Stanek J, Wanek T, Tournier N, Bauer M, Pahnke J, Langer O. Imaging P-glycoprotein induction at the blood-brain barrier of a beta-amyloidosis mouse model with 11C-metoclopramide PET. J Nucl Med. 2019 Dec 5. jnumed.119.237198. doi: 10.2967/jnumed.119.237198.
21.
go back to reference Bartels AL, Willemsen ATM, Kortekaas R, de Jong BM, de Vries R, de Klerk O, van Oostrom JCH, Portman A, Leenders KL. Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm (Vienna). 2008;115:1001–1009. Bartels AL, Willemsen ATM, Kortekaas R, de Jong BM, de Vries R, de Klerk O, van Oostrom JCH, Portman A, Leenders KL. Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm (Vienna). 2008;115:1001–1009.
22.
go back to reference Vautier S, Fernandez C. ABCB1: the role in Parkinson’s disease and pharmacokinetics of antiparkinsonian drugs. Expert Opin Drug Metab Toxicol. 2009;5:1349–58.CrossRef Vautier S, Fernandez C. ABCB1: the role in Parkinson’s disease and pharmacokinetics of antiparkinsonian drugs. Expert Opin Drug Metab Toxicol. 2009;5:1349–58.CrossRef
23.
go back to reference Li Y, Li Y, Pang S, Huang W, Zhang A, Hawley RG, Yan B. Novel and functional ABCB1 gene variant in sporadic Parkinson’s disease. Neurosci Lett. 2014;566:61–6.CrossRef Li Y, Li Y, Pang S, Huang W, Zhang A, Hawley RG, Yan B. Novel and functional ABCB1 gene variant in sporadic Parkinson’s disease. Neurosci Lett. 2014;566:61–6.CrossRef
24.
go back to reference Luurtsema G, Elsinga P, Dierckx R, Boellaard R, van Waarde A. PET tracers for imaging of ABC transporters at the blood-brain barrier: principles and strategies. Curr Pharm Des. 2016;22:5779–85.CrossRef Luurtsema G, Elsinga P, Dierckx R, Boellaard R, van Waarde A. PET tracers for imaging of ABC transporters at the blood-brain barrier: principles and strategies. Curr Pharm Des. 2016;22:5779–85.CrossRef
25.
go back to reference Raaphorst RM, Windhorst AD, Elsinga PH, Colabufo NA, Lammertsma AA, Luurtsema G. Radiopharmaceuticals for assessing ABC transporters at the blood-brain barrier. Clin Pharmacol Ther. 2015;97:362–71.CrossRef Raaphorst RM, Windhorst AD, Elsinga PH, Colabufo NA, Lammertsma AA, Luurtsema G. Radiopharmaceuticals for assessing ABC transporters at the blood-brain barrier. Clin Pharmacol Ther. 2015;97:362–71.CrossRef
26.
go back to reference Lubberink M. Kinetic models for measuring P-glycoprotein function at the blood-brain barrier with positron emission tomography. Curr Pharm Des. 2016;22:5786–92.CrossRef Lubberink M. Kinetic models for measuring P-glycoprotein function at the blood-brain barrier with positron emission tomography. Curr Pharm Des. 2016;22:5786–92.CrossRef
27.
go back to reference Kannan P, John C, Zoghbi SS, Halldin C, Gottesman MM, Innis RB, Hall MD. Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Thr. 2009;86:368–77.CrossRef Kannan P, John C, Zoghbi SS, Halldin C, Gottesman MM, Innis RB, Hall MD. Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Thr. 2009;86:368–77.CrossRef
28.
go back to reference Luurtsema G, Molthoff CFM, Schuit RC, Windhorst AD, Lammertsma AA, Franssen EJF. Evaluation of (R)-[11C]verapamil as PET tracer of P-glycoprotein function in the blood-brain barrier: kinetics and metabolism in the rat. Nucl Med Biol. 2005;32:87–93.CrossRef Luurtsema G, Molthoff CFM, Schuit RC, Windhorst AD, Lammertsma AA, Franssen EJF. Evaluation of (R)-[11C]verapamil as PET tracer of P-glycoprotein function in the blood-brain barrier: kinetics and metabolism in the rat. Nucl Med Biol. 2005;32:87–93.CrossRef
29.
go back to reference Savolainen H, Cantore M, Colabufo NA, Elsinga PH, Windhorst AD, Luurtesma G. Synthesis and preclinical evaluation of three novel fluorine-18 labeled radiopharmaceuticals for P-glycoprotein PET imaging at the blood-brain barrier. Mol Pharm. 2015;12:2265–75.CrossRef Savolainen H, Cantore M, Colabufo NA, Elsinga PH, Windhorst AD, Luurtesma G. Synthesis and preclinical evaluation of three novel fluorine-18 labeled radiopharmaceuticals for P-glycoprotein PET imaging at the blood-brain barrier. Mol Pharm. 2015;12:2265–75.CrossRef
30.
go back to reference Savolainen H, Windhorst AD, Elsinga PH, Cantore M, Colabufo NA, Willemsen AT, Luurtsema G. Evaluation of [18F]MC225 as a PET radiotracer for measuring P-glycoprotein function at the blood-brain barrier in rats: kinetics, metabolism, and selectivity. J Cereb Blood Flow Metab. 2017;37:1286–98.CrossRef Savolainen H, Windhorst AD, Elsinga PH, Cantore M, Colabufo NA, Willemsen AT, Luurtsema G. Evaluation of [18F]MC225 as a PET radiotracer for measuring P-glycoprotein function at the blood-brain barrier in rats: kinetics, metabolism, and selectivity. J Cereb Blood Flow Metab. 2017;37:1286–98.CrossRef
31.
go back to reference Savolainen H, Meerlo P, Elsinga PH, Windhorst AD, Dierckx RAJO, Colabufo NA, van Waarde A, Luurtsema G. P-glycoprotein function in the rodent brain displays a daily rhythm, a quantitative in vivo PET study. AAPS J. 2016;18:1524–31.CrossRef Savolainen H, Meerlo P, Elsinga PH, Windhorst AD, Dierckx RAJO, Colabufo NA, van Waarde A, Luurtsema G. P-glycoprotein function in the rodent brain displays a daily rhythm, a quantitative in vivo PET study. AAPS J. 2016;18:1524–31.CrossRef
32.
go back to reference Toyohara J, García-Varela L, Kakiuchi T, Ohba H, Nishiyama S, Tago T, Vállez-García D, Boellaard R, Elsinga PH, Tsukada H, Luurtsema G. Head to head comparison of (R)-[11C]verapamil and [18F]MC225 in non-human primates; tracers for measuring P-gp function at the blood-brain barrier. Eur J Nucl Med Mol Imaging. 2017;44:S366 (abstract). Toyohara J, García-Varela L, Kakiuchi T, Ohba H, Nishiyama S, Tago T, Vállez-García D, Boellaard R, Elsinga PH, Tsukada H, Luurtsema G. Head to head comparison of (R)-[11C]verapamil and [18F]MC225 in non-human primates; tracers for measuring P-gp function at the blood-brain barrier. Eur J Nucl Med Mol Imaging. 2017;44:S366 (abstract).
33.
go back to reference Toyohara J, Sakata M, Tago T, Colabufo N, Luurtsema G. Dosimetry and toxicology of [18F]MC225 for measuring P-glycoprotein function at the blood-brain barrier in humans. J Labelled Comp Radiopharm. 2019;62:S388–S389 (abstract). Toyohara J, Sakata M, Tago T, Colabufo N, Luurtsema G. Dosimetry and toxicology of [18F]MC225 for measuring P-glycoprotein function at the blood-brain barrier in humans. J Labelled Comp Radiopharm. 2019;62:S388–S389 (abstract).
34.
go back to reference Kirschner AS, Ice RD, Beierwaltes WH. Radiation dosimetry of 131I-19-iodocholesterol: the pitfalls of using tissue concentration data–reply. J Nucl Med. 1975;16:248–9. Kirschner AS, Ice RD, Beierwaltes WH. Radiation dosimetry of 131I-19-iodocholesterol: the pitfalls of using tissue concentration data–reply. J Nucl Med. 1975;16:248–9.
35.
go back to reference Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.PubMed Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.PubMed
36.
go back to reference ICRP, 2007. The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP. 2007;37:1–332. ICRP, 2007. The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP. 2007;37:1–332.
37.
go back to reference Fusi F, Durante M, Gorelli B, Perrone MG, Colabufo NA, Saponara S. MC225, a novel probe for P-glycoprotein PET imaging at the blood-brain barrier: in vitro cardiovascular safety evaluation. J Cardiovasc Pharmacol. 2017;70:405–10.CrossRef Fusi F, Durante M, Gorelli B, Perrone MG, Colabufo NA, Saponara S. MC225, a novel probe for P-glycoprotein PET imaging at the blood-brain barrier: in vitro cardiovascular safety evaluation. J Cardiovasc Pharmacol. 2017;70:405–10.CrossRef
38.
go back to reference Koziorowski J, Behe M, Decristoforo C, Ballinger C, Elsinga P, Ferrari V, Kolenc Peitl P, Todde S, Mindt TL. Position paper on requirements for toxicological studies in the specific case of radiopharmaceuticals. EJNMMI Radiopharm Chem. 2016;1:1.CrossRef Koziorowski J, Behe M, Decristoforo C, Ballinger C, Elsinga P, Ferrari V, Kolenc Peitl P, Todde S, Mindt TL. Position paper on requirements for toxicological studies in the specific case of radiopharmaceuticals. EJNMMI Radiopharm Chem. 2016;1:1.CrossRef
39.
go back to reference Zanotti-Fregonara P, Lammertsma AA, Innis RB. Suggested pathway to assess radiation safety of 18F-labeled PET tracers for first-in-human studies. Eur J Nucl Med Mol Imaging. 2013;40:1781–3.CrossRef Zanotti-Fregonara P, Lammertsma AA, Innis RB. Suggested pathway to assess radiation safety of 18F-labeled PET tracers for first-in-human studies. Eur J Nucl Med Mol Imaging. 2013;40:1781–3.CrossRef
40.
go back to reference ICRP, 1992. Radiological protection in biomedical research. ICRP publication 62. Ann ICRP. 1992;22:1–18. ICRP, 1992. Radiological protection in biomedical research. ICRP publication 62. Ann ICRP. 1992;22:1–18.
42.
go back to reference Sattler B, Kranz M, Starke A, Wilke S, Donat CK, Deuther-Conard W, Patt M, Schildan A, Patt J, Smits R, Hoepping A, Schoenknecht P, Steinbach J, Brust P, Sabri O. Internal dose assessment of (–)-18F-flubatine, comparing animal model datasets of mice and piglets with first-in-human results. J Nucl Med. 2014;55:1885–92.CrossRef Sattler B, Kranz M, Starke A, Wilke S, Donat CK, Deuther-Conard W, Patt M, Schildan A, Patt J, Smits R, Hoepping A, Schoenknecht P, Steinbach J, Brust P, Sabri O. Internal dose assessment of (–)-18F-flubatine, comparing animal model datasets of mice and piglets with first-in-human results. J Nucl Med. 2014;55:1885–92.CrossRef
Metadata
Title
Automated synthesis, preclinical toxicity, and radiation dosimetry of [18F]MC225 for clinical use: a tracer for measuring P-glycoprotein function at the blood-brain barrier
Authors
Jun Toyohara
Muneyuki Sakata
Tetsuro Tago
Nicola A. Colabufo
Gert Luurtsema
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2020
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-020-00674-6

Other articles of this Issue 1/2020

EJNMMI Research 1/2020 Go to the issue