Skip to main content
Top
Published in: EJNMMI Research 1/2020

Open Access 01-12-2020 | Original research

Radiobiological and dosimetric assessment of DNA-intercalated 99mTc-complexes bearing acridine orange derivatives

Authors: Ana Belchior, Salvatore Di Maria, Célia Fernandes, Pedro Vaz, António Paulo, Paula Raposinho

Published in: EJNMMI Research | Issue 1/2020

Login to get access

Abstract

Background

Recently, a new family of 99mTc(I)-tricarbonyl complexes bearing an acridine orange (AO) DNA targeting unit and different linkers between the Auger emitter (99mTc) and the AO moiety was evaluated for Auger therapy. Among them, 99mTc-C3 places the corresponding radionuclide at a shortest distance to DNA and produces important double strand breaks (DSB) yields in plasmid DNA providing the first evidence that 99mTc can efficiently induce DNA damage when well positioned to the double helix. Here in, we have extended the studies to human prostate cancer PC3 cells using the 99mTc-C3 and 99mTc-C5 complexes, aiming to assess how the distance to DNA influences the radiation-induced biological effects in this tumoral cell line, namely, in which concerns early and late damage effects.

Results

Our results highlight the limited biological effectiveness of Auger electrons, as short path length radiation, with increasing distances to DNA. The evaluation of the radiation-induced biological effects was complemented with a comparative microdosimetric study based on intracellular dose values. The comparative study, between MIRD and Monte Carlo (MC) methods used to assess the cellular doses, revealed that efforts should be made in order to standardize the bioeffects modeling for DNA-incorporated Auger electron emitters.

Conclusions

99mTc might not be the ideal radionuclide for Auger therapy but can be useful to validate the design of new classes of Auger-electron emitting radioconjugates. In this context, our results highlight the crucial importance of the distance of Auger electron emitters to the target DNA and encourage the development of strategies for the fine tuning of the distance to DNA for other medical radionuclides (e.g., 111In or 161Tb) in order to enhance their radiotherapeutic effects within the Auger therapy of cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Becker DV, Sawin CT. Radioiodine and thyroid disease: the beginning. Semin Nucl Med. 1996;26:155–64.CrossRef Becker DV, Sawin CT. Radioiodine and thyroid disease: the beginning. Semin Nucl Med. 1996;26:155–64.CrossRef
2.
go back to reference Tomblyn M. Radioimmunotherapy for B-cell non-hodgkin lymphomas. Cancer Control. 2012;19:196–203.CrossRef Tomblyn M. Radioimmunotherapy for B-cell non-hodgkin lymphomas. Cancer Control. 2012;19:196–203.CrossRef
3.
go back to reference Pandit-Taskar N, Larson SM, Carrasquillo JA. Bone-seeking radiopharmaceuticals for treatment of osseous metastases, Part 1: alpha therapy with 223Ra-dichloride. J Nucl Med. 2014;55:268–74.CrossRef Pandit-Taskar N, Larson SM, Carrasquillo JA. Bone-seeking radiopharmaceuticals for treatment of osseous metastases, Part 1: alpha therapy with 223Ra-dichloride. J Nucl Med. 2014;55:268–74.CrossRef
4.
go back to reference Cornelissen B, Vallis KA. Targeting the nucleus: an overview of Auger-electron radionuclide therapy. Curr Drug Discov Technol. 2010;7:263–79.CrossRef Cornelissen B, Vallis KA. Targeting the nucleus: an overview of Auger-electron radionuclide therapy. Curr Drug Discov Technol. 2010;7:263–79.CrossRef
5.
go back to reference Kassis AI. Molecular and cellular radiobiological effects of Auger emitting radionuclides. Radiat Prot Dosim. 2011;143:241–7.CrossRef Kassis AI. Molecular and cellular radiobiological effects of Auger emitting radionuclides. Radiat Prot Dosim. 2011;143:241–7.CrossRef
6.
go back to reference Cornelissen B. Imaging the inside of a tumour: a review of radionuclide imaging and theranostics targeting intracellular epitopes. J Labelled Comp Radiopharm. 2014;57:310–6.CrossRef Cornelissen B. Imaging the inside of a tumour: a review of radionuclide imaging and theranostics targeting intracellular epitopes. J Labelled Comp Radiopharm. 2014;57:310–6.CrossRef
7.
go back to reference Ku A, Facca V, Cai Z, et al. Auger electrons for cancer therapy – a review. EJNMMI Radiopharmacy and Chemistry. 2019;4:27.CrossRef Ku A, Facca V, Cai Z, et al. Auger electrons for cancer therapy – a review. EJNMMI Radiopharmacy and Chemistry. 2019;4:27.CrossRef
8.
go back to reference Kiess AP, Minn I, Chen Y, et al. Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen. J Nucl Med. 2015;56:1401–7.CrossRef Kiess AP, Minn I, Chen Y, et al. Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen. J Nucl Med. 2015;56:1401–7.CrossRef
9.
go back to reference Karagiannis TC, Lobachevsky PN, Martin RF. Cytotoxicity of an 125I-labelled DNA ligand. Acta Oncol. 2000;39:681–5.CrossRef Karagiannis TC, Lobachevsky PN, Martin RF. Cytotoxicity of an 125I-labelled DNA ligand. Acta Oncol. 2000;39:681–5.CrossRef
10.
go back to reference Gardette M, Papon J, Bonnet M, et al. Evaluation of new iodinated acridine derivatives for targeted radionuclide therapy of melanoma using 125I, an Auger electron emitter. Investig New Drugs. 2011;29:1253–63.CrossRef Gardette M, Papon J, Bonnet M, et al. Evaluation of new iodinated acridine derivatives for targeted radionuclide therapy of melanoma using 125I, an Auger electron emitter. Investig New Drugs. 2011;29:1253–63.CrossRef
11.
go back to reference Haefliger P, Agorastos N, Renard A, et al. Cell uptake and radiotoxicity studies of an nuclear localization signal peptide-intercalator conjugate labeled with [99mTc(CO)3]+. Bioconjug Chem. 2005;16:582–7.CrossRef Haefliger P, Agorastos N, Renard A, et al. Cell uptake and radiotoxicity studies of an nuclear localization signal peptide-intercalator conjugate labeled with [99mTc(CO)3]+. Bioconjug Chem. 2005;16:582–7.CrossRef
12.
go back to reference Chung WJ, Cui Y, Huang FY, et al. 99mTc pyrene derivative complex causes double-strand breaks in dsDNA mainly through cluster-mediated indirect effect in aqueous solution. PLoS One. 2014;9:e108162.CrossRef Chung WJ, Cui Y, Huang FY, et al. 99mTc pyrene derivative complex causes double-strand breaks in dsDNA mainly through cluster-mediated indirect effect in aqueous solution. PLoS One. 2014;9:e108162.CrossRef
13.
go back to reference Imstepf S, Pierroz V, Raposinho P, et al. Nuclear targeting with an Auger electron emitter potentiates the action of a widely used antineoplastic drug. Bioconjug Chem. 2015;26:2397–407.CrossRef Imstepf S, Pierroz V, Raposinho P, et al. Nuclear targeting with an Auger electron emitter potentiates the action of a widely used antineoplastic drug. Bioconjug Chem. 2015;26:2397–407.CrossRef
14.
go back to reference Balagurumoorthy P, Xu X, Wang K, et al. Effect of distance between decaying I-125 and DNA on Auger-elctron induced double strand break yield. Int J Radiat Biol. 2012;88(12):998–1008.CrossRef Balagurumoorthy P, Xu X, Wang K, et al. Effect of distance between decaying I-125 and DNA on Auger-elctron induced double strand break yield. Int J Radiat Biol. 2012;88(12):998–1008.CrossRef
16.
go back to reference Vitor RF, Esteves T, Marques F, et al. (99m)Tc-tricarbonyl complexes functionalized with anthracenyl fragments: synthesis, characterization, and evaluation of their radiotoxic effects in murine melanoma cells. Cancer Biother Radiopharm. 2009;24:551–63.CrossRef Vitor RF, Esteves T, Marques F, et al. (99m)Tc-tricarbonyl complexes functionalized with anthracenyl fragments: synthesis, characterization, and evaluation of their radiotoxic effects in murine melanoma cells. Cancer Biother Radiopharm. 2009;24:551–63.CrossRef
17.
go back to reference Esteves T, Xavier C, Gama S, et al. Tricarbonyl M(I) (M = Re, (99m)Tc) complexes bearing acridine fluorophores: synthesis, characterization, DNA interaction studies and nuclear targeting. Org Biomol Chem. 2010;8:4104–16.CrossRef Esteves T, Xavier C, Gama S, et al. Tricarbonyl M(I) (M = Re, (99m)Tc) complexes bearing acridine fluorophores: synthesis, characterization, DNA interaction studies and nuclear targeting. Org Biomol Chem. 2010;8:4104–16.CrossRef
18.
go back to reference Esteves T, Marques F, Paulo A, et al. Nuclear targeting with cell-specific multifunctional tricarbonyl M(I) (M is Re, (99m)Tc) complexes: synthesis, characterization, and cell studies. J Biol Inorg Chem. 2011;16:1141–53.CrossRef Esteves T, Marques F, Paulo A, et al. Nuclear targeting with cell-specific multifunctional tricarbonyl M(I) (M is Re, (99m)Tc) complexes: synthesis, characterization, and cell studies. J Biol Inorg Chem. 2011;16:1141–53.CrossRef
19.
go back to reference Pereira E, Quental L, Palma E, et al. Evaluation of acridine orange derivatives as DNA-targeted radiopharmaceuticals for Auger therapy: influence of the radionuclide and distance to DNA. Sci Rep. 2017;7:42544.CrossRef Pereira E, Quental L, Palma E, et al. Evaluation of acridine orange derivatives as DNA-targeted radiopharmaceuticals for Auger therapy: influence of the radionuclide and distance to DNA. Sci Rep. 2017;7:42544.CrossRef
20.
go back to reference Agorastos N, Borsig L, Renard A, et al. Cell-specific and nuclear targeting with [M(CO)(3)](+) (M=(99m)Tc, Re)-based complexes conjugated to acridine orange and bombesin. Chemistry. 2007;13:3842–52.CrossRef Agorastos N, Borsig L, Renard A, et al. Cell-specific and nuclear targeting with [M(CO)(3)](+) (M=(99m)Tc, Re)-based complexes conjugated to acridine orange and bombesin. Chemistry. 2007;13:3842–52.CrossRef
21.
go back to reference Bavelaar BM, Lee BQ, Gill MR, et al. Subcellular targeting of theranostic radionuclides. Front Pharmacol. 2018;9:996.CrossRef Bavelaar BM, Lee BQ, Gill MR, et al. Subcellular targeting of theranostic radionuclides. Front Pharmacol. 2018;9:996.CrossRef
22.
go back to reference Carpenter AE, Jones TR, Lamprecht MR, et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7:R100.CrossRef Carpenter AE, Jones TR, Lamprecht MR, et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7:R100.CrossRef
23.
go back to reference Fenech M. The in vitro micronucleus technique. Mutat Res. 2000;455:81–95.CrossRef Fenech M. The in vitro micronucleus technique. Mutat Res. 2000;455:81–95.CrossRef
24.
go back to reference Franken N, Rodermond H, Stap J, et al. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRef Franken N, Rodermond H, Stap J, et al. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRef
25.
go back to reference Goddu S, Howell RG, et al. MIRD cellular S-values. 1997 Soc Nucl Med. Goddu S, Howell RG, et al. MIRD cellular S-values. 1997 Soc Nucl Med.
26.
go back to reference Goorley JT, et al. Initial MCNP6 Release Overview - MCNP6 version 1.0, Los Alamos National Laboratory Report, LA-UR-13-22934. Los Alamos: National Laboratory, New Mexico; 2013. Goorley JT, et al. Initial MCNP6 Release Overview - MCNP6 version 1.0, Los Alamos National Laboratory Report, LA-UR-13-22934. Los Alamos: National Laboratory, New Mexico; 2013.
27.
go back to reference Neti P, Howell RG. Isolating effects of microscopic nonuniform distributions of 131I on labeled and unlabeled cells. J Nucl Med. 2004;45:1050–8.PubMedPubMedCentral Neti P, Howell RG. Isolating effects of microscopic nonuniform distributions of 131I on labeled and unlabeled cells. J Nucl Med. 2004;45:1050–8.PubMedPubMedCentral
28.
go back to reference Di Maria S, et al. Monte Carlo dose distribution calculation at nuclear level for Auger-emitting radionuclide energies. Appl Radiat Isot. 2018;135:72–7.CrossRef Di Maria S, et al. Monte Carlo dose distribution calculation at nuclear level for Auger-emitting radionuclide energies. Appl Radiat Isot. 2018;135:72–7.CrossRef
29.
go back to reference Eckerman K, Endo A. ICRP publication 107. Nuclear decay data for dosimetric calculations. Ann ICRP. 2008;38:7–96.CrossRef Eckerman K, Endo A. ICRP publication 107. Nuclear decay data for dosimetric calculations. Ann ICRP. 2008;38:7–96.CrossRef
30.
go back to reference Hughes G. Recent developments in low-energy electron/photon transport for MCNP6. Prog Nucl Sci Tech. 2014;4:454–8.CrossRef Hughes G. Recent developments in low-energy electron/photon transport for MCNP6. Prog Nucl Sci Tech. 2014;4:454–8.CrossRef
31.
go back to reference Perkins ST, Cullen DE, Seltzer SM. Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL evaluated electron data library (EEDL), Z = 1–100”, Report UCRL-50400;31, 1991. Perkins ST, Cullen DE, Seltzer SM. Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL evaluated electron data library (EEDL), Z = 1–100”, Report UCRL-50400;31, 1991.
32.
go back to reference Poskus A. Evaluation of computational models and cross sections used by MCNP6 for simulation of electron backscattering. Nucl Instrum Meth Phys Res B. 2016;368:15–27.CrossRef Poskus A. Evaluation of computational models and cross sections used by MCNP6 for simulation of electron backscattering. Nucl Instrum Meth Phys Res B. 2016;368:15–27.CrossRef
33.
go back to reference Antoni R, Bourgois L. Evaluation of the new electron-transport algorithm in MCNP6.1 for the simulation of dose point kernel in water. Nucl Inst Methods Phys Res B. 2017;412:102–8.CrossRef Antoni R, Bourgois L. Evaluation of the new electron-transport algorithm in MCNP6.1 for the simulation of dose point kernel in water. Nucl Inst Methods Phys Res B. 2017;412:102–8.CrossRef
34.
go back to reference Falzone N, Fernández-Varea JM, Flux G, Vallis KA. Monte Carlo evaluation of Auger electron–emitting theranostic radionuclides. J Nucl Med. 2015;56:1441–6.CrossRef Falzone N, Fernández-Varea JM, Flux G, Vallis KA. Monte Carlo evaluation of Auger electron–emitting theranostic radionuclides. J Nucl Med. 2015;56:1441–6.CrossRef
35.
go back to reference Hobbs R, Howell R, Song H, et al. Redefining relative biological effectiveness in the context of EQDX formalism: implications for alpha-particle emitter therapy. Radiat Res. 2014;181(1):90–8.CrossRef Hobbs R, Howell R, Song H, et al. Redefining relative biological effectiveness in the context of EQDX formalism: implications for alpha-particle emitter therapy. Radiat Res. 2014;181(1):90–8.CrossRef
37.
go back to reference Ivashkevich A, Redon C, Nakamura A, et al. Use of the g-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett. 2012;327(1-2):123–33.CrossRef Ivashkevich A, Redon C, Nakamura A, et al. Use of the g-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett. 2012;327(1-2):123–33.CrossRef
39.
go back to reference Maucksch, et al. Comparison of the radiotoxicity of the 99mTc-labeled compounds 99mTc-pertechnetate, 99mTc-HMPAO and 99mTc-MIBI. Int J Radiat Biol. 2016;92(11):698–706.CrossRef Maucksch, et al. Comparison of the radiotoxicity of the 99mTc-labeled compounds 99mTc-pertechnetate, 99mTc-HMPAO and 99mTc-MIBI. Int J Radiat Biol. 2016;92(11):698–706.CrossRef
40.
go back to reference Chatalic KLS. Marion de Jong DJK Radiopeptides for imaging and therapy: a radiant future. J Nucl Med. 2015;56:1809–12.CrossRef Chatalic KLS. Marion de Jong DJK Radiopeptides for imaging and therapy: a radiant future. J Nucl Med. 2015;56:1809–12.CrossRef
Metadata
Title
Radiobiological and dosimetric assessment of DNA-intercalated 99mTc-complexes bearing acridine orange derivatives
Authors
Ana Belchior
Salvatore Di Maria
Célia Fernandes
Pedro Vaz
António Paulo
Paula Raposinho
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2020
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-020-00663-9

Other articles of this Issue 1/2020

EJNMMI Research 1/2020 Go to the issue