Skip to main content
Top
Published in: EJNMMI Research 1/2020

Open Access 01-12-2020 | Prostate Cancer | Original research

Targeted beta therapy of prostate cancer with 177Lu-labelled Miltuximab® antibody against glypican-1 (GPC-1)

Authors: Mei-Chun Yeh, Brian W. C. Tse, Nicholas L. Fletcher, Zachary H. Houston, Maria Lund, Marianna Volpert, Chelsea Stewart, Kamil A. Sokolowski, Varinder Jeet, Kristofer J. Thurecht, Douglas H. Campbell, Bradley J. Walsh, Colleen C. Nelson, Pamela J. Russell

Published in: EJNMMI Research | Issue 1/2020

Login to get access

Abstract

Purpose

Chimeric antibody Miltuximab®, a human IgG1 engineered from the parent antibody MIL-38, is in clinical development for solid tumour therapy. Miltuximab® targets glypican-1 (GPC-1), a cell surface protein involved in tumour growth, which is overexpressed in solid tumours, including prostate cancer (PCa). This study investigated the potential of 89Zr-labelled Miltuximab® as an imaging agent, and 177Lu-labelled Miltuximab® as a targeted beta therapy, in a mouse xenograft model of human prostate cancer.

Methods

Male BALB/c nude mice were inoculated subcutaneously with GPC-1-positive DU-145 PCa cells. In imaging and biodistribution studies, mice bearing palpable tumours received (a) 2.62 MBq [89Zr]Zr-DFO-Miltuximab® followed by PET-CT imaging, or (b) 6 MBq [177Lu]Lu-DOTA-Miltuximab® by Cerenkov imaging, and ex vivo assessment of biodistribution. In an initial tumour efficacy study, mice bearing DU-145 tumours were administered intravenously with 6 MBq [177Lu]Lu-DOTA-Miltuximab® or control DOTA-Miltuximab® then euthanised after 27 days. In a subsequent survival efficacy study, tumour-bearing mice were given 3 or 10 MBq of [177Lu]Lu-DOTA-Miltuximab®, or control, and followed up to 120 days.

Results

Antibody accumulation in DU-145 xenografts was detected by PET-CT imaging using [89Zr]Zr-DFO-Miltuximab® and confirmed by Cerenkov luminescence imaging post injection of [177Lu]Lu-DOTA-Miltuximab®. Antibody accumulation was higher (% IA/g) in tumours than other organs across multiple time points. A single injection with 6 MBq of [177Lu]Lu-DOTA-Miltuximab® significantly inhibited tumour growth as compared with DOTA-Miltuximab® (control). In the survival study, mice treated with 10 MBq [177Lu]Lu-DOTA-Miltuximab® had significantly prolonged survival (mean 85 days) versus control (45 days), an effect associated with increased cancer cell apoptosis. Tissue histopathology assessment showed no abnormalities associated with [177Lu]Lu-DOTA-Miltuximab®, in line with other observations of tolerability, including body weight stability.

Conclusion

These findings demonstrate the potential utility of Miltuximab® as a PET imaging agent ([89Zr]Zr-DFO-Miltuximab®) and a beta therapy ([177Lu]Lu-DOTA-Miltuximab®) in patients with PCa or other GPC-1 expressing tumours.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.CrossRef
2.
go back to reference Graham J, Baker M, Macbeth F, Titshall V. Diagnosis and treatment of prostate cancer: Summary of NICE guidance. BMJ. 2008;336:610–2.CrossRef Graham J, Baker M, Macbeth F, Titshall V. Diagnosis and treatment of prostate cancer: Summary of NICE guidance. BMJ. 2008;336:610–2.CrossRef
3.
go back to reference Wong YNS, Ferraldeschi R, Attard G, De Bono J. Evolution of androgen receptor targeted therapy for advanced prostate cancer. Nat Rev Clin Oncol. 2014;11:365–76.CrossRef Wong YNS, Ferraldeschi R, Attard G, De Bono J. Evolution of androgen receptor targeted therapy for advanced prostate cancer. Nat Rev Clin Oncol. 2014;11:365–76.CrossRef
4.
go back to reference Sharifi N, Dahut WL, Steinberg SM, Figg WD, Tarassoff C, Arlen P, et al. A retrospective study of the time to clinical endpoints for advanced prostate cancer. BJU Int. 2005;96:985–9.CrossRef Sharifi N, Dahut WL, Steinberg SM, Figg WD, Tarassoff C, Arlen P, et al. A retrospective study of the time to clinical endpoints for advanced prostate cancer. BJU Int. 2005;96:985–9.CrossRef
5.
go back to reference Moreira DM, Howard LE, Sourbeer KN, Amarasekara HS, Chow LC, Cockrell DC, et al. Predicting time from metastasis to overall survival in castration-resistant prostate cancer: results from SEARCH. Clin Genitourin Cancer. 2017;15:60–66e2.CrossRef Moreira DM, Howard LE, Sourbeer KN, Amarasekara HS, Chow LC, Cockrell DC, et al. Predicting time from metastasis to overall survival in castration-resistant prostate cancer: results from SEARCH. Clin Genitourin Cancer. 2017;15:60–66e2.CrossRef
6.
go back to reference Walker KZ, Russell PJ, Kingsley EA, Philips J, Raghavan D. Detection of malignant cells in voided urine from patients with bladder cancer, a novel monoclonal assay. J Urol. 1989;142:1578–83.CrossRef Walker KZ, Russell PJ, Kingsley EA, Philips J, Raghavan D. Detection of malignant cells in voided urine from patients with bladder cancer, a novel monoclonal assay. J Urol. 1989;142:1578–83.CrossRef
7.
go back to reference Russell PJ, Ow KT, Tam PN, Juarez J, Kingsley EA, Qu CF, et al. Immunohistochemical characterisation of the monoclonal antibody BLCA-38 for the detection of prostate cancer. Cancer Immunol Immunother. 2004;53:995–1004.PubMed Russell PJ, Ow KT, Tam PN, Juarez J, Kingsley EA, Qu CF, et al. Immunohistochemical characterisation of the monoclonal antibody BLCA-38 for the detection of prostate cancer. Cancer Immunol Immunother. 2004;53:995–1004.PubMed
8.
go back to reference Truong Q, Justiniano IO, Nocon AL, Soon JT, Wissmueller S, Campbell DH, et al. Glypican-1 as a biomarker for prostate cancer: isolation and characterization. J Cancer. 2016;7:1002–9.CrossRef Truong Q, Justiniano IO, Nocon AL, Soon JT, Wissmueller S, Campbell DH, et al. Glypican-1 as a biomarker for prostate cancer: isolation and characterization. J Cancer. 2016;7:1002–9.CrossRef
9.
go back to reference Häcker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol. 2005;6:530–41.CrossRef Häcker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol. 2005;6:530–41.CrossRef
12.
go back to reference Lightfoot DV, Walker KK, Boniface GR, Hetherington EL, Izard ME, Russell PJ. Dosimetric and therapeutic studies in nude mice xenograft models with 153Samarium-labelled monoclonal antibody, BLCA-38. Antib Immunoconjugates Radiopharm. 1991;4:319–30. Lightfoot DV, Walker KK, Boniface GR, Hetherington EL, Izard ME, Russell PJ. Dosimetric and therapeutic studies in nude mice xenograft models with 153Samarium-labelled monoclonal antibody, BLCA-38. Antib Immunoconjugates Radiopharm. 1991;4:319–30.
13.
go back to reference Russell PJ, Davis K, Kingsley E, Humphreys J, Hanley J, O’Grady H, et al. Preclinical studies of monoclonal antibodies for intravesical radioimmunotherapy of human bladder cancer. Cell Biophys. 1994;24–25:155–61.CrossRef Russell PJ, Davis K, Kingsley E, Humphreys J, Hanley J, O’Grady H, et al. Preclinical studies of monoclonal antibodies for intravesical radioimmunotherapy of human bladder cancer. Cell Biophys. 1994;24–25:155–61.CrossRef
14.
go back to reference Russell PJ, Plomley J, Shon IH, O’Grady H, Pearce N. Monoclonal antibodies for intravesical radioimmunotherapy of human bladder cancer. Cell Biophys. 1993;22:27–47.CrossRef Russell PJ, Plomley J, Shon IH, O’Grady H, Pearce N. Monoclonal antibodies for intravesical radioimmunotherapy of human bladder cancer. Cell Biophys. 1993;22:27–47.CrossRef
15.
go back to reference Li Y, Song E, Rizvi SMA, Power CA, Beretov J, Raja C, et al. Inhibition of micrometastatic prostate cancer cell spread in animal models by213bilabeled multipletargeted α radioimmunoconjugates. Clin Cancer Res. 2009;15:865–75.CrossRef Li Y, Song E, Rizvi SMA, Power CA, Beretov J, Raja C, et al. Inhibition of micrometastatic prostate cancer cell spread in animal models by213bilabeled multipletargeted α radioimmunoconjugates. Clin Cancer Res. 2009;15:865–75.CrossRef
16.
go back to reference Gurney H, Sabanathan D, Gillatt D, Poursoultan P, Ho Shon K, Walsh B, et al. MILGa-01: a first-in-human study assessing the safety and tolerability of chMIL-38 in metastatic prostate, bladder, and pancreatic cancers. J Clin Oncol. 2017;35:e565.CrossRef Gurney H, Sabanathan D, Gillatt D, Poursoultan P, Ho Shon K, Walsh B, et al. MILGa-01: a first-in-human study assessing the safety and tolerability of chMIL-38 in metastatic prostate, bladder, and pancreatic cancers. J Clin Oncol. 2017;35:e565.CrossRef
17.
go back to reference Jauw YWS, Menke-van der Houven van Oordt CW, Hoekstra OS, Hendrikse HN, Vugts DJ, Zijlstra JM, et al. Immuno-positron emission tomography with zirconium-89-labeled monoclonal antibodies in oncology: what can we learn from initial clinical trials? Front Pharmacol. 2016;7:131.CrossRef Jauw YWS, Menke-van der Houven van Oordt CW, Hoekstra OS, Hendrikse HN, Vugts DJ, Zijlstra JM, et al. Immuno-positron emission tomography with zirconium-89-labeled monoclonal antibodies in oncology: what can we learn from initial clinical trials? Front Pharmacol. 2016;7:131.CrossRef
18.
go back to reference Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH, et al. Phase II study of lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19:5182–91.CrossRef Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH, et al. Phase II study of lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19:5182–91.CrossRef
20.
go back to reference Corwin WL, Ebrahimi-Nik H, Floyd SM, Tavousi P, Mandoiu II, Srivastava PK. Tumor Control Index as a new tool to assess tumor growth in experimental animals. J Immunol Methods. 2017;445:71–6.CrossRef Corwin WL, Ebrahimi-Nik H, Floyd SM, Tavousi P, Mandoiu II, Srivastava PK. Tumor Control Index as a new tool to assess tumor growth in experimental animals. J Immunol Methods. 2017;445:71–6.CrossRef
21.
go back to reference Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF. Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer. 1978;21:274–81.CrossRef Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF. Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer. 1978;21:274–81.CrossRef
22.
go back to reference Boyle CC, Paine AJ, Mather SJ. The mechanism of hepatic uptake of a radiolabelled monoclonal antibody. Int J Cancer. 1992;50:1443–52.CrossRef Boyle CC, Paine AJ, Mather SJ. The mechanism of hepatic uptake of a radiolabelled monoclonal antibody. Int J Cancer. 1992;50:1443–52.CrossRef
23.
go back to reference Koizumi M, Endo K, Watanabe Y, Saga T, Sakahara H, Konishi J, et al. Pharmacokinetics of internally labeled monoclonal antibodies as a gold standard: comparison of biodistribution of 75Se-, 111In-, and 125I-labeled monoclonal antibodies in osteogenic sarcoma xenografts in nude mice. Cancer Res. 1989;49:1752–7.PubMed Koizumi M, Endo K, Watanabe Y, Saga T, Sakahara H, Konishi J, et al. Pharmacokinetics of internally labeled monoclonal antibodies as a gold standard: comparison of biodistribution of 75Se-, 111In-, and 125I-labeled monoclonal antibodies in osteogenic sarcoma xenografts in nude mice. Cancer Res. 1989;49:1752–7.PubMed
24.
go back to reference Lee S, Kim JH, Lee JH, Zen Y, Han JK. Imaging monitoring of Kupffer cell function and hepatic oxygen saturation in preneoplastic changes during cholangiocarcinogenesis. Sci Rep. 2017;7:14203.CrossRef Lee S, Kim JH, Lee JH, Zen Y, Han JK. Imaging monitoring of Kupffer cell function and hepatic oxygen saturation in preneoplastic changes during cholangiocarcinogenesis. Sci Rep. 2017;7:14203.CrossRef
25.
go back to reference Li M, Tang Y, Yao J. Photoacoustic tomography of blood oxygenation: a mini review. Photoacoustics. 2018;10:65–73.CrossRef Li M, Tang Y, Yao J. Photoacoustic tomography of blood oxygenation: a mini review. Photoacoustics. 2018;10:65–73.CrossRef
26.
go back to reference Matsuzaki S, Serada S, Hiramatsu K, Nojima S, Matsuzaki S, Ueda Y, et al. Anti-glypican-1 antibody-drug conjugate exhibits potent preclinical antitumor activity against glypican-1 positive uterine cervical cancer. Int J Cancer. 2018;142:1056–66.CrossRef Matsuzaki S, Serada S, Hiramatsu K, Nojima S, Matsuzaki S, Ueda Y, et al. Anti-glypican-1 antibody-drug conjugate exhibits potent preclinical antitumor activity against glypican-1 positive uterine cervical cancer. Int J Cancer. 2018;142:1056–66.CrossRef
27.
go back to reference Harada E, Serada S, Fujimoto M, Takahashi Y, Takahashi T, Hara H, et al. Glypican-1 targeted antibody-based therapy induces preclinical antitumor activity against esophageal squamous cell carcinoma. Oncotarget. 2017;8:24741–52.PubMedPubMedCentral Harada E, Serada S, Fujimoto M, Takahashi Y, Takahashi T, Hara H, et al. Glypican-1 targeted antibody-based therapy induces preclinical antitumor activity against esophageal squamous cell carcinoma. Oncotarget. 2017;8:24741–52.PubMedPubMedCentral
28.
go back to reference Jen YHL, Musacchio M, Lander AD. Glypican-1 controls brain size through regulation of fibroblast growth factor signaling in early neurogenesis. Neural Dev. 2009;4:1–19.CrossRef Jen YHL, Musacchio M, Lander AD. Glypican-1 controls brain size through regulation of fibroblast growth factor signaling in early neurogenesis. Neural Dev. 2009;4:1–19.CrossRef
29.
go back to reference Levin RA, Lund ME, Truong Q, Wu A, Shore ND, Saltzstein DR, et al. Development of a reliable assay to measure glypican-1 in plasma and serum reveals circulating glypican-1 as a novel prostate cancer biomarker. Oncotarget. 2018;9:22359–67.PubMedPubMedCentral Levin RA, Lund ME, Truong Q, Wu A, Shore ND, Saltzstein DR, et al. Development of a reliable assay to measure glypican-1 in plasma and serum reveals circulating glypican-1 as a novel prostate cancer biomarker. Oncotarget. 2018;9:22359–67.PubMedPubMedCentral
30.
go back to reference Emmett L, Willowson K, Violet J, Shin J, Blanksby A, Lee J. Lutetium 177 PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J Med Radiat Sci. 2017;64:52–60.CrossRef Emmett L, Willowson K, Violet J, Shin J, Blanksby A, Lee J. Lutetium 177 PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J Med Radiat Sci. 2017;64:52–60.CrossRef
31.
go back to reference Hofman MS, Violet J, Hicks RJ, Ferdinandus J, Ping Thang S, Akhurst T, et al. [ 177 Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018;6:825–33.CrossRef Hofman MS, Violet J, Hicks RJ, Ferdinandus J, Ping Thang S, Akhurst T, et al. [ 177 Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018;6:825–33.CrossRef
32.
go back to reference Bräuer A, Grubert LS, Roll W, Schrader AJ, Schäfers M, Bögemann M, et al. 177Lu-PSMA-617 radioligand therapy and outcome in patients with metastasized castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44:1663–70.CrossRef Bräuer A, Grubert LS, Roll W, Schrader AJ, Schäfers M, Bögemann M, et al. 177Lu-PSMA-617 radioligand therapy and outcome in patients with metastasized castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44:1663–70.CrossRef
33.
go back to reference Tagawa ST, Vallabhajosula S, Christos PJ, Jhanwar YS, Batra JS, Lam L, et al. Phase 1/2 study of fractionated dose lutetium-177–labeled anti–prostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) for metastatic castration-resistant prostate cancer. Cancer. 2019;125:2561–9.PubMed Tagawa ST, Vallabhajosula S, Christos PJ, Jhanwar YS, Batra JS, Lam L, et al. Phase 1/2 study of fractionated dose lutetium-177–labeled anti–prostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) for metastatic castration-resistant prostate cancer. Cancer. 2019;125:2561–9.PubMed
34.
go back to reference Lu H, Niu F, Liu F, Gao J, Sun Y, Zhao X. Elevated glypican-1 expression is associated with an unfavorable prognosis in pancreatic ductal adenocarcinoma. Cancer Med. 2017;6:1181–91.CrossRef Lu H, Niu F, Liu F, Gao J, Sun Y, Zhao X. Elevated glypican-1 expression is associated with an unfavorable prognosis in pancreatic ductal adenocarcinoma. Cancer Med. 2017;6:1181–91.CrossRef
35.
go back to reference Matsuda K, Maruyama H, Guo F, Kleeff J, Itakura J, Matsumoto Y, et al. Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res. 2001;61:5562–9.PubMed Matsuda K, Maruyama H, Guo F, Kleeff J, Itakura J, Matsumoto Y, et al. Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res. 2001;61:5562–9.PubMed
36.
go back to reference Saito T, Sugiyama K, Hama S, Yamasaki F, Takayasu T, Nosaka R, et al. High expression of glypican-1 predicts dissemination and poor prognosis in glioblastomas. World Neurosurg. 2017;105:282–8.CrossRef Saito T, Sugiyama K, Hama S, Yamasaki F, Takayasu T, Nosaka R, et al. High expression of glypican-1 predicts dissemination and poor prognosis in glioblastomas. World Neurosurg. 2017;105:282–8.CrossRef
37.
go back to reference Hara H, Takahashi T, Serada S, Fujimoto M, Ohkawara T, Nakatsuka R, et al. Overexpression of glypican-1 implicates poor prognosis and their chemoresistance in oesophageal squamous cell carcinoma. Br J Cancer. 2016;115:66–75.CrossRef Hara H, Takahashi T, Serada S, Fujimoto M, Ohkawara T, Nakatsuka R, et al. Overexpression of glypican-1 implicates poor prognosis and their chemoresistance in oesophageal squamous cell carcinoma. Br J Cancer. 2016;115:66–75.CrossRef
38.
go back to reference Amatya VJ, Kushitani K, Kai Y, Suzuki R, Miyata Y, Okada M, et al. Glypican-1 immunohistochemistry is a novel marker to differentiate epithelioid mesothelioma from lung adenocarcinoma. Mod Pathol. 2018;31:809–15.CrossRef Amatya VJ, Kushitani K, Kai Y, Suzuki R, Miyata Y, Okada M, et al. Glypican-1 immunohistochemistry is a novel marker to differentiate epithelioid mesothelioma from lung adenocarcinoma. Mod Pathol. 2018;31:809–15.CrossRef
39.
go back to reference Chiu K, Lee L, Cheung S, Churg AM. Glypican-1 immunohistochemistry does not separate mesothelioma from pulmonary adenocarcinoma. Mod Pathol. 2018;31:1400–3.CrossRef Chiu K, Lee L, Cheung S, Churg AM. Glypican-1 immunohistochemistry does not separate mesothelioma from pulmonary adenocarcinoma. Mod Pathol. 2018;31:1400–3.CrossRef
Metadata
Title
Targeted beta therapy of prostate cancer with 177Lu-labelled Miltuximab® antibody against glypican-1 (GPC-1)
Authors
Mei-Chun Yeh
Brian W. C. Tse
Nicholas L. Fletcher
Zachary H. Houston
Maria Lund
Marianna Volpert
Chelsea Stewart
Kamil A. Sokolowski
Varinder Jeet
Kristofer J. Thurecht
Douglas H. Campbell
Bradley J. Walsh
Colleen C. Nelson
Pamela J. Russell
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2020
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-020-00637-x

Other articles of this Issue 1/2020

EJNMMI Research 1/2020 Go to the issue