Skip to main content
Top
Published in: EJNMMI Research 1/2019

Open Access 01-12-2019 | Lymphoma | Original research

The use of a proposed updated EARL harmonization of 18F-FDG PET-CT in patients with lymphoma yields significant differences in Deauville score compared with current EARL recommendations

Authors: John Ly, David Minarik, Lars Edenbrandt, Per Wollmer, Elin Trägårdh

Published in: EJNMMI Research | Issue 1/2019

Login to get access

Abstract

Background

The Deauville score (DS) is a clinical tool, based on the comparison between lesion and reference organ uptake of 18F-fluorodeoxyglucose (FDG), used to stratify patients with lymphoma into categories reflecting their disease status. With a plethora of positron emission tomography with computed tomography (PET-CT) hard- and software algorithms, standard uptake value (SUV) in lesions and reference organs may differ which affects DS classification and therefore medical treatment. The EANM Research Ltd. (EARL) harmonization program from the European Association of Nuclear Medicine (EANM) partly mitigates this issue, but local preferences are common in clinical practice. We have investigated the discordance in DS calculated from patients with lymphoma referred for 18F-FDG PET-CT reconstructed with three different algorithms: the newly introduced block-sequential regularization expectation-maximization algorithm commercially sold as Q. Clear (QC, GE Healthcare, Milwaukee, WI, USA), compliant with the newly proposed updated EARL recommendations, and two settings compliant with the current EARL recommendations (EARLlower and EARLupper, representing the lower and upper limit of the EARL recommendations).

Methods

Fifty-two patients with non-Hodgkin and Hodgkin lymphoma were included (18 females and 34 males). Segmentation of mediastinal blood pool and liver were semi-automatically performed, whereas segmentation of lesions was done manually. From these segmentations, SUVmax and SUVpeak were obtained and DS calculated.

Results

There was a significant difference in DS between the QC algorithm and EARLlower/EARLupper (p < 0.0001 for both) but not between EARLlower and EARLupper (p = 0.102) when SUVmax was used. For SUVpeak, there was a significant difference between QC and EARLlower (p = 0.001), but not for QC vs EARLupper (p = 0.071) or EARLlower vs EARLupper (p = 0.102). Five non-responders (DS 4–5) for QC were classified as responders (DS 1–3) when EARLlower/EARLupper was used, both when SUVmax and SUVpeak were investigated.

Conclusion

Using the proposed updated EARL recommendations compared with the current recommendations will significantly change DS classification. In select cases, the discordance would affect the choice of medical treatment. Specifically, the current EARL recommendations were more often prone to classify patients as responders.
Literature
1.
go back to reference van der Vos CS, et al. Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):4–16.PubMedPubMedCentral van der Vos CS, et al. Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):4–16.PubMedPubMedCentral
2.
go back to reference Barrington SF, et al. Concordance between four European centres of PET reporting criteria designed for use in multicentre trials in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2010;37(10):1824–33.CrossRef Barrington SF, et al. Concordance between four European centres of PET reporting criteria designed for use in multicentre trials in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2010;37(10):1824–33.CrossRef
3.
go back to reference Biggi A, et al. International validation study for interim PET in ABVD-treated, advanced-stage hodgkin lymphoma: interpretation criteria and concordance rate among reviewers. J Nucl Med. 2013;54(5):683–90.CrossRef Biggi A, et al. International validation study for interim PET in ABVD-treated, advanced-stage hodgkin lymphoma: interpretation criteria and concordance rate among reviewers. J Nucl Med. 2013;54(5):683–90.CrossRef
4.
go back to reference Barrington SF, Kluge R. FDG PET for therapy monitoring in Hodgkin and non-Hodgkin lymphomas. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):97–110.CrossRef Barrington SF, Kluge R. FDG PET for therapy monitoring in Hodgkin and non-Hodgkin lymphomas. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):97–110.CrossRef
5.
go back to reference Barrington SF, et al. PET-CT for staging and early response: results from the Response-Adapted Therapy in Advanced Hodgkin Lymphoma study. Blood. 2016;127(12):1531–8.CrossRef Barrington SF, et al. PET-CT for staging and early response: results from the Response-Adapted Therapy in Advanced Hodgkin Lymphoma study. Blood. 2016;127(12):1531–8.CrossRef
6.
go back to reference Cheson BD, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.CrossRef Cheson BD, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.CrossRef
7.
go back to reference Hsu DF, et al. Studies of a next generation silicon-photomultiplier-based time-of-flight PET/CT system. J Nucl Med. 2017;58(9):1511–18.CrossRef Hsu DF, et al. Studies of a next generation silicon-photomultiplier-based time-of-flight PET/CT system. J Nucl Med. 2017;58(9):1511–18.CrossRef
8.
go back to reference Boellaard R, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.CrossRef Boellaard R, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.CrossRef
9.
go back to reference Kaalep A, et al. Feasibility of state of the art PET/CT systems performance harmonisation. Eur J Nucl Med Mol Imaging. 2018;45(8):1344–61.CrossRef Kaalep A, et al. Feasibility of state of the art PET/CT systems performance harmonisation. Eur J Nucl Med Mol Imaging. 2018;45(8):1344–61.CrossRef
10.
go back to reference Aide N, et al. EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):17–31.CrossRef Aide N, et al. EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):17–31.CrossRef
11.
go back to reference Ross S, Clear Q. GE Healthcare. White paper; 2014. Ross S, Clear Q. GE Healthcare. White paper; 2014.
12.
go back to reference Sadik M, et al. Automated quantification of reference levels in liver and mediastinal blood pool for the Deauville therapy response classification using FDG-PET/CT in Hodgkin and non-Hodgkin lymphomas. Clin Physiol Funct Imaging. 2019;39(1):78–84.CrossRef Sadik M, et al. Automated quantification of reference levels in liver and mediastinal blood pool for the Deauville therapy response classification using FDG-PET/CT in Hodgkin and non-Hodgkin lymphomas. Clin Physiol Funct Imaging. 2019;39(1):78–84.CrossRef
13.
go back to reference Enilorac B, et al. Does PET reconstruction method affect Deauville score in lymphoma patients? J Nucl Med. 2018;59(7):1049–55.CrossRef Enilorac B, et al. Does PET reconstruction method affect Deauville score in lymphoma patients? J Nucl Med. 2018;59(7):1049–55.CrossRef
14.
go back to reference Sher A, et al. For avid glucose tumors, the SUV peak is the most reliable parameter for [(18) F]FDG-PET/CT quantification, regardless of acquisition time. EJNMMI Res. 2016;6(1):21.CrossRef Sher A, et al. For avid glucose tumors, the SUV peak is the most reliable parameter for [(18) F]FDG-PET/CT quantification, regardless of acquisition time. EJNMMI Res. 2016;6(1):21.CrossRef
15.
go back to reference Munk OL, et al. Point-spread function reconstructed PET images of sub-centimeter lesions are not quantitative. EJNMMI Phys. 2017;4(1):5.CrossRef Munk OL, et al. Point-spread function reconstructed PET images of sub-centimeter lesions are not quantitative. EJNMMI Phys. 2017;4(1):5.CrossRef
Metadata
Title
The use of a proposed updated EARL harmonization of 18F-FDG PET-CT in patients with lymphoma yields significant differences in Deauville score compared with current EARL recommendations
Authors
John Ly
David Minarik
Lars Edenbrandt
Per Wollmer
Elin Trägårdh
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Keyword
Lymphoma
Published in
EJNMMI Research / Issue 1/2019
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-019-0536-3

Other articles of this Issue 1/2019

EJNMMI Research 1/2019 Go to the issue