Skip to main content
Top
Published in: EJNMMI Research 1/2018

Open Access 01-12-2018 | Original research

Effect of starvation on brain glucose metabolism and 18F-2-fluoro-2-deoxyglucose uptake: an experimental in-vivo and ex-vivo study

Authors: Ambra Buschiazzo, Vanessa Cossu, Matteo Bauckneht, Annamaria Orengo, Patrizia Piccioli, Laura Emionite, Giovanna Bianchi, Federica Grillo, Anna Rocchi, Francesco Di Giulio, Francesco Fiz, Lizzia Raffaghello, Flavio Nobili, Silvia Bruno, Giacomo Caviglia, Silvia Ravera, Fabio Benfenati, Michele Piana, Silvia Morbelli, Gianmario Sambuceti, Cecilia Marini

Published in: EJNMMI Research | Issue 1/2018

Login to get access

Abstract

Background

The close connection between neuronal activity and glucose consumption accounts for the clinical value of 18F-fluoro-2-deoxyglucose (FDG) imaging in neurodegenerative disorders. Nevertheless, brain metabolic response to starvation (STS) might hamper the diagnostic accuracy of FDG PET/CT when the cognitive impairment results in a severe food deprivation.

Methods

Thirty six-week-old BALB/c female mice were divided into two groups: “control” group (n = 15) were kept under standard conditions and exposed to fasting for 6 h before the study; the remaining “STS” mice were submitted to 48 h STS (absence of food and free access to water) before imaging. In each group, nine mice were submitted to dynamic micro-PET imaging to estimate brain and skeletal muscle glucose consumption (C- and SM-MRGlu*) by Patlak approach, while six mice were sacrificed for ex vivo determination of the lumped constant, defined as the ratio between CMRGlu* and glucose consumption measured by glucose removal from the incubation medium (n = 3) or biochemical analyses (n = 3), respectively.

Results

CMRGlu* was lower in starved than in control mice (46.1 ± 23.3 vs 119.5 ± 40.2 nmol × min−1 × g−1, respectively, p < 0.001). Ex vivo evaluation documented a remarkable stability of lumped constant as documented by the stability of GLUT expression, G6Pase activity, and kinetic features of hexokinase-catalyzed phosphorylation. However, brain SUV in STS mice was even (though not significantly) higher with respect to control mice. Conversely, a marked decrease in both SM-MRGlu* and SM-SUV was documented in STS mice with respect to controls.

Conclusions

STS markedly decreases brain glucose consumption without altering measured FDG SUV in mouse experimental models. This apparent paradox does not reflect any change in lumped constant. Rather, it might be explained by the metabolic response of the whole body: the decrease in FDG sequestration by the skeletal muscle is as profound as to prolong tracer persistence in the bloodstream and thus its availability for brain uptake.
Literature
1.
go back to reference Clarke DD, Sokoloff L. Circulation and energy metabolism of the brain. In: Siegel G, Agranoff B, Albers RW, Fisher S, editors. Basic neurochemistry: molecular, cellular, and medical aspects. 6th ed. Philadelphia: Lippincott-Raven; 1999. p. 637–69. Clarke DD, Sokoloff L. Circulation and energy metabolism of the brain. In: Siegel G, Agranoff B, Albers RW, Fisher S, editors. Basic neurochemistry: molecular, cellular, and medical aspects. 6th ed. Philadelphia: Lippincott-Raven; 1999. p. 637–69.
2.
go back to reference Dienel GA. Energy metabolism in the brain. In: Byrne JH, Roberts JL, editors. From molecules to networks: an introduction to cellular and molecular neuroscience. 2nd ed. London: Academic Press; 2009. p. 49–110. Dienel GA. Energy metabolism in the brain. In: Byrne JH, Roberts JL, editors. From molecules to networks: an introduction to cellular and molecular neuroscience. 2nd ed. London: Academic Press; 2009. p. 49–110.
3.
go back to reference Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21:1133–45.CrossRefPubMed Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21:1133–45.CrossRefPubMed
4.
go back to reference Garibotto V, Herholz K, Boccardi M, Picco A, Varrone A, Nordberg A, Nobili F, Ratib O. Geneva task force for the roadmap of Alzheimer's biomarkers. Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging. 2017;52:183–95.CrossRefPubMed Garibotto V, Herholz K, Boccardi M, Picco A, Varrone A, Nordberg A, Nobili F, Ratib O. Geneva task force for the roadmap of Alzheimer's biomarkers. Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging. 2017;52:183–95.CrossRefPubMed
6.
go back to reference Redies C, Hoffer LJ, Beil C, Marliss EB, Evans AC, Lariviere F, Marrett S, Meyer E, Diksic M, Gjedde A, et al. Generalized decrease in brain glucose metabolism during fasting in humans studied by PET. Am J Phys. 1989;256:E805–10. Redies C, Hoffer LJ, Beil C, Marliss EB, Evans AC, Lariviere F, Marrett S, Meyer E, Diksic M, Gjedde A, et al. Generalized decrease in brain glucose metabolism during fasting in humans studied by PET. Am J Phys. 1989;256:E805–10.
7.
go back to reference Emmerzaal TL, Kiliaan AJ, Gustafson DR. 2003–2013: a decade of body mass index, Alzheimer’s disease, and dementia. J Alzheimers Dis. 2015;43:739–55.CrossRefPubMed Emmerzaal TL, Kiliaan AJ, Gustafson DR. 2003–2013: a decade of body mass index, Alzheimer’s disease, and dementia. J Alzheimers Dis. 2015;43:739–55.CrossRefPubMed
8.
go back to reference Gao S, Nguyen JT, Hendrie HC, Unverzagt FW, Hake A, Smith-Gamble V, Hall K. Accelerated weight loss and incident dementia in an elderly African-American cohort. J Am Geriatr Soc. 2011;59:18–25.CrossRefPubMed Gao S, Nguyen JT, Hendrie HC, Unverzagt FW, Hake A, Smith-Gamble V, Hall K. Accelerated weight loss and incident dementia in an elderly African-American cohort. J Am Geriatr Soc. 2011;59:18–25.CrossRefPubMed
9.
go back to reference Johnson DK, Wilkins CH, Morris JC. Accelerated weight loss may precede diagnosis in Alzheimer disease. Arch Neurol. 2006;63:1312–7.CrossRefPubMed Johnson DK, Wilkins CH, Morris JC. Accelerated weight loss may precede diagnosis in Alzheimer disease. Arch Neurol. 2006;63:1312–7.CrossRefPubMed
10.
go back to reference Hawkins RA, Biebuyck JF. Ketone bodies are selectively used by individual brain regions. Science. 1979;205:325–7.CrossRefPubMed Hawkins RA, Biebuyck JF. Ketone bodies are selectively used by individual brain regions. Science. 1979;205:325–7.CrossRefPubMed
11.
go back to reference Hasselbalch SG, Madsen PL, Hageman LP, Olsen KS, Justesen N, Holm S, Paulson OB. Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia. Am J Phys. 1996;270:E746–51. Hasselbalch SG, Madsen PL, Hageman LP, Olsen KS, Justesen N, Holm S, Paulson OB. Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia. Am J Phys. 1996;270:E746–51.
12.
go back to reference Bøtker HE, Goodwin GW, Holden JE, Doenst T, Gjedde A, Taegtmeyer H. Myocardial glucose uptake measured with fluorodeoxyglucose: a proposed method to account for variable lumped constants. J Nucl Med. 1999;40:1186–96.PubMed Bøtker HE, Goodwin GW, Holden JE, Doenst T, Gjedde A, Taegtmeyer H. Myocardial glucose uptake measured with fluorodeoxyglucose: a proposed method to account for variable lumped constants. J Nucl Med. 1999;40:1186–96.PubMed
13.
go back to reference Graham MM, Muzi M, Spence AM, O'Sullivan F, Lewellen TK, Link JM, Krohn KA. The FDG lumped constant in normal human brain. J Nucl Med. 2002;43:1157–66.PubMed Graham MM, Muzi M, Spence AM, O'Sullivan F, Lewellen TK, Link JM, Krohn KA. The FDG lumped constant in normal human brain. J Nucl Med. 2002;43:1157–66.PubMed
14.
go back to reference Marini C, Bianchi G, Buschiazzo A, Ravera S, Martella R, Bottoni G, Petretto A, Emionite L, Monteverde E, Capitanio S, Inglese E, Fabbi M, Bongioanni F, Garaboldi L, Bruzzi P, Orengo AM, Raffaghello L, Sambuceti G. Divergent targets of glycolysis and oxidative phosphorylation result in additive effects of metformin and starvation in colon and breast cancer. Sci Rep. 2016;6:19569.CrossRefPubMedPubMedCentral Marini C, Bianchi G, Buschiazzo A, Ravera S, Martella R, Bottoni G, Petretto A, Emionite L, Monteverde E, Capitanio S, Inglese E, Fabbi M, Bongioanni F, Garaboldi L, Bruzzi P, Orengo AM, Raffaghello L, Sambuceti G. Divergent targets of glycolysis and oxidative phosphorylation result in additive effects of metformin and starvation in colon and breast cancer. Sci Rep. 2016;6:19569.CrossRefPubMedPubMedCentral
15.
go back to reference Marini C, Salani B, Massollo M, Amaro A, Esposito AI, Orengo AM, Capitanio S, Emionite L, Riondato M, Bottoni G, Massara C, Boccardo S, Fabbi M, Campi C, Ravera S, Angelini G, Morbelli S, Cilli M, Cordera R, Truini M, Maggi D, Pfeffer U, Sambuceti G. Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle. 2013;12:3490–9.CrossRefPubMedPubMedCentral Marini C, Salani B, Massollo M, Amaro A, Esposito AI, Orengo AM, Capitanio S, Emionite L, Riondato M, Bottoni G, Massara C, Boccardo S, Fabbi M, Campi C, Ravera S, Angelini G, Morbelli S, Cilli M, Cordera R, Truini M, Maggi D, Pfeffer U, Sambuceti G. Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle. 2013;12:3490–9.CrossRefPubMedPubMedCentral
16.
go back to reference Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7.CrossRefPubMed Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7.CrossRefPubMed
17.
go back to reference Björke H, Andersson K. Automated, high-resolution cellular retention and uptake studies in vitro. Appl Radiat Isot. 2006;64:901–5.CrossRefPubMed Björke H, Andersson K. Automated, high-resolution cellular retention and uptake studies in vitro. Appl Radiat Isot. 2006;64:901–5.CrossRefPubMed
18.
go back to reference Björke H, Andersson K. Measuring the affinity of a radioligand with its receptor using a rotating cell dish with in situ reference area. Appl Radiat Isot. 2006;64:32–7.CrossRefPubMed Björke H, Andersson K. Measuring the affinity of a radioligand with its receptor using a rotating cell dish with in situ reference area. Appl Radiat Isot. 2006;64:32–7.CrossRefPubMed
19.
go back to reference Mertens K, Mees G, Lambert B, Van de Wiele C, Goethals I. In vitro 2-deoxy-2-[18F]fluoro-D-glucose uptake: practical considerations. Cancer Biother Radiopharm. 2012;27:183–8.CrossRefPubMed Mertens K, Mees G, Lambert B, Van de Wiele C, Goethals I. In vitro 2-deoxy-2-[18F]fluoro-D-glucose uptake: practical considerations. Cancer Biother Radiopharm. 2012;27:183–8.CrossRefPubMed
20.
go back to reference Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.CrossRefPubMed Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.CrossRefPubMed
21.
go back to reference Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRefPubMed Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRefPubMed
22.
go back to reference Balza E, Castellani P, Moreno PS, Piccioli P, Medraño-Fernandez I, Semino C, Rubartelli A. Restoring microenvironmental redox and pH homeostasis inhibits neoplastic cell growth and migration: therapeutic efficacy of esomeprazole plus sulfasalazine on 3-MCA-induced sarcoma. Oncotarget. 2017;8:67482–96.CrossRefPubMedPubMedCentral Balza E, Castellani P, Moreno PS, Piccioli P, Medraño-Fernandez I, Semino C, Rubartelli A. Restoring microenvironmental redox and pH homeostasis inhibits neoplastic cell growth and migration: therapeutic efficacy of esomeprazole plus sulfasalazine on 3-MCA-induced sarcoma. Oncotarget. 2017;8:67482–96.CrossRefPubMedPubMedCentral
23.
go back to reference Muzi M, Freeman SD, Burrows RC, Wiseman RW, Link JM, Krohn KA, Graham MM, Spence AM. Kinetic characterization of hexokinase isoenzymes from glioma cells: implications for FDG imaging of human brain tumors. Nucl Med Biol. 2001;28:107–16.CrossRefPubMed Muzi M, Freeman SD, Burrows RC, Wiseman RW, Link JM, Krohn KA, Graham MM, Spence AM. Kinetic characterization of hexokinase isoenzymes from glioma cells: implications for FDG imaging of human brain tumors. Nucl Med Biol. 2001;28:107–16.CrossRefPubMed
24.
go back to reference Prince A, Zhang Y, Croniger C, Puchowicz M. Oxidative metabolism: glucose versus ketones. Adv Exp Med Biol. 2013;789:323–8.CrossRefPubMed Prince A, Zhang Y, Croniger C, Puchowicz M. Oxidative metabolism: glucose versus ketones. Adv Exp Med Biol. 2013;789:323–8.CrossRefPubMed
25.
go back to reference Kreissl MC, Stout DB, Wong KP, Wu HM, Caglayan E, Ladno W, Zhang X, Prior JO, Reiners C, Huang SC, Schelbert HR. Influence of dietary state and insulin on myocardial, skeletal muscle and brain [F]-fluorodeoxyglucose kinetics in mice. EJNMMI Res. 2011;1:8.CrossRefPubMedPubMedCentral Kreissl MC, Stout DB, Wong KP, Wu HM, Caglayan E, Ladno W, Zhang X, Prior JO, Reiners C, Huang SC, Schelbert HR. Influence of dietary state and insulin on myocardial, skeletal muscle and brain [F]-fluorodeoxyglucose kinetics in mice. EJNMMI Res. 2011;1:8.CrossRefPubMedPubMedCentral
26.
go back to reference Ruderman NB, Ross PS, Berger M, Goodman MN. Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats. Biochem J. 1974;138:1–10.CrossRefPubMedPubMedCentral Ruderman NB, Ross PS, Berger M, Goodman MN. Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats. Biochem J. 1974;138:1–10.CrossRefPubMedPubMedCentral
27.
go back to reference Corddry DH, Rapoport SI, London ED. No effect of hyperketonemia on local cerebral glucose utilization in conscious rats. J Neurochem. 1982;38:1637–41.CrossRefPubMed Corddry DH, Rapoport SI, London ED. No effect of hyperketonemia on local cerebral glucose utilization in conscious rats. J Neurochem. 1982;38:1637–41.CrossRefPubMed
29.
go back to reference Korge P, Calmettes G, Weiss JN. Increased reactive oxygen species production during reductive stress: the roles of mitochondrial glutathione and thioredoxin reductases. Biochim Biophys Acta Bioenerg. 2015;1847:514–25.CrossRef Korge P, Calmettes G, Weiss JN. Increased reactive oxygen species production during reductive stress: the roles of mitochondrial glutathione and thioredoxin reductases. Biochim Biophys Acta Bioenerg. 2015;1847:514–25.CrossRef
30.
go back to reference Hasselbalch SG, Knudsen GM, Jakobsen J, Hageman LP, Holm S, Paulson OB. Brain metabolism during short-term starvation in humans. J Cereb Blood Flow Metab. 1994;14:125–31.CrossRefPubMed Hasselbalch SG, Knudsen GM, Jakobsen J, Hageman LP, Holm S, Paulson OB. Brain metabolism during short-term starvation in humans. J Cereb Blood Flow Metab. 1994;14:125–31.CrossRefPubMed
31.
go back to reference Wu GY, Thompson JR. The effect of ketone bodies on alanine and glutamine metabolism in isolated skeletal muscle from the fasted chick. Biochem J. 1988;255:139–44.CrossRefPubMedPubMedCentral Wu GY, Thompson JR. The effect of ketone bodies on alanine and glutamine metabolism in isolated skeletal muscle from the fasted chick. Biochem J. 1988;255:139–44.CrossRefPubMedPubMedCentral
32.
go back to reference Yanagisawa M, Planel E, Ishiguro K, Fujta SC. Starvation induces tau hyperphosphorylation in mouse brain: implications for Alzheimer’s disease. FEBS Letter. 1999;461:329–33.CrossRef Yanagisawa M, Planel E, Ishiguro K, Fujta SC. Starvation induces tau hyperphosphorylation in mouse brain: implications for Alzheimer’s disease. FEBS Letter. 1999;461:329–33.CrossRef
33.
go back to reference Jimenez A, Pegueroles J, Carmona-Iragui M, Vilaplana E, Montal V, Alcolea D, Videla L, Illán-Gala I, Pané A, Casajoana A, Belbin O, Clarimón J, Moizé V, Vidal J, Lleó A, Fortea J, Blesa R. Alzheimer's disease neuroimaging initiative. weight loss in the healthy elderly might be a non-cognitive sign of preclinical Alzheimer’s disease. Oncotarget. 2017;8:104706–16.PubMedPubMedCentral Jimenez A, Pegueroles J, Carmona-Iragui M, Vilaplana E, Montal V, Alcolea D, Videla L, Illán-Gala I, Pané A, Casajoana A, Belbin O, Clarimón J, Moizé V, Vidal J, Lleó A, Fortea J, Blesa R. Alzheimer's disease neuroimaging initiative. weight loss in the healthy elderly might be a non-cognitive sign of preclinical Alzheimer’s disease. Oncotarget. 2017;8:104706–16.PubMedPubMedCentral
Metadata
Title
Effect of starvation on brain glucose metabolism and 18F-2-fluoro-2-deoxyglucose uptake: an experimental in-vivo and ex-vivo study
Authors
Ambra Buschiazzo
Vanessa Cossu
Matteo Bauckneht
Annamaria Orengo
Patrizia Piccioli
Laura Emionite
Giovanna Bianchi
Federica Grillo
Anna Rocchi
Francesco Di Giulio
Francesco Fiz
Lizzia Raffaghello
Flavio Nobili
Silvia Bruno
Giacomo Caviglia
Silvia Ravera
Fabio Benfenati
Michele Piana
Silvia Morbelli
Gianmario Sambuceti
Cecilia Marini
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2018
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-018-0398-0

Other articles of this Issue 1/2018

EJNMMI Research 1/2018 Go to the issue