Skip to main content
Top
Published in: EJNMMI Research 1/2018

Open Access 01-12-2018 | Original research

Correlation of neuropsychological and metabolic changes after epilepsy surgery in patients with left mesial temporal lobe epilepsy with hippocampal sclerosis

Authors: Canan Güvenç, Patrick Dupont, Jan Van den Stock, Laura Seynaeve, Kathleen Porke, Eva Dries, Karen Van Bouwel, Johannes van Loon, Tom Theys, Karolien E. Goffin, Wim Van Paesschen

Published in: EJNMMI Research | Issue 1/2018

Login to get access

Abstract

Background

Epilepsy surgery often causes changes in cognition and cerebral glucose metabolism. Our aim was to explore relationships between pre- and postoperative cerebral metabolism as measured with 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and neuropsychological test scores in patients with left mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS), who were rendered seizure-free after epilepsy surgery.

Results

Thirteen patients were included. All had neuropsychological testing and an interictal FDG-PET scan of the brain pre- and postoperative. Correlations between changes in neuropsychological test scores and metabolism were examined using statistical parametric mapping (SPM). There were no significant changes in the neuropsychological test scores pre- and postoperatively at the group level. Decreased metabolism was observed in the left mesial temporal regions and occipital lobe. Increased metabolism was observed in the bi-frontal and right parietal lobes, temporal lobes, occipital lobes, thalamus, cerebellum, and vermis. In these regions, we did not find a correlation between changes in metabolism and neuropsychological test scores. A significant negative correlation, however, was found between metabolic changes in the precuneus and Boston Naming Test (BNT) scores.

Conclusions

There are significant metabolic decreases in the left mesial temporal regions and increases in the bi-frontal lobes; right parietal, temporal, and occipital lobes; right thalamus; cerebellum; and vermis in patients with left MTLE-HS who were rendered seizure-free after epilepsy surgery. We could not confirm that these changes translate into significant cognitive changes. A significant negative correlation was found between changes in confrontation naming and changes in metabolism in the precuneus. We speculate that the precuneus may play a compensatory role in patients with postoperative naming difficulties after left TLE surgery. Understanding of these neural mechanisms may aid in designing cognitive rehabilitation strategies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342:5.CrossRef Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342:5.CrossRef
2.
go back to reference Vermeulen L, van Loon J, Theys T, et al. Outcome after epilepsy surgery at the University Hospitals Leuven 1998–2012. Acta Neurol Belg. 2016;116:3. Vermeulen L, van Loon J, Theys T, et al. Outcome after epilepsy surgery at the University Hospitals Leuven 1998–2012. Acta Neurol Belg. 2016;116:3.
3.
go back to reference Sherman EM, Wiebe S, Fay-McClymont TB, et al. Neuropsychological outcomes after epilepsy surgery: systematic review and pooled estimates. Epilepsia. 2011;52:5.CrossRef Sherman EM, Wiebe S, Fay-McClymont TB, et al. Neuropsychological outcomes after epilepsy surgery: systematic review and pooled estimates. Epilepsia. 2011;52:5.CrossRef
4.
go back to reference Busch RM, Floden DP, Prayson B, et al. Estimating risk of word-finding problems in adults undergoing epilepsy surgery. Neurology. 2016;87:22.CrossRef Busch RM, Floden DP, Prayson B, et al. Estimating risk of word-finding problems in adults undergoing epilepsy surgery. Neurology. 2016;87:22.CrossRef
5.
go back to reference Tang Y, Yu X, Zhou B, et al. Short-term cognitive changes after surgery in patients with unilateral mesial temporal lobe epilepsy associated with hippocampal sclerosis. J Clin Neurosci. 2014;21:8. Tang Y, Yu X, Zhou B, et al. Short-term cognitive changes after surgery in patients with unilateral mesial temporal lobe epilepsy associated with hippocampal sclerosis. J Clin Neurosci. 2014;21:8.
6.
go back to reference Helmstaedter C, Elger CE. Cognitive consequences of two-thirds anterior temporal lobectomy on verbal memory in 144 patients: a three-month follow-up study. Epilepsia. 1996;37:2. Helmstaedter C, Elger CE. Cognitive consequences of two-thirds anterior temporal lobectomy on verbal memory in 144 patients: a three-month follow-up study. Epilepsia. 1996;37:2.
7.
go back to reference Hermann BP, Seidenberg M, Haltiner A, et al. Relationship of age at onset, chronologic age, and adequacy of preoperative performance to verbal memory change after anterior temporal lobectomy. Epilepsia. 1995;36:2. Hermann BP, Seidenberg M, Haltiner A, et al. Relationship of age at onset, chronologic age, and adequacy of preoperative performance to verbal memory change after anterior temporal lobectomy. Epilepsia. 1995;36:2.
8.
go back to reference Reivich M, Kuhl D, Wolf A, et al. The 18F-fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res. 1979;44:1. Reivich M, Kuhl D, Wolf A, et al. The 18F-fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res. 1979;44:1.
9.
go back to reference Alavi A, Dann R, Chawluk J, et al. Positron emission tomography imaging of regional cerebral glucose metabolism. Semin Nucl Med. 1986;16:1. Alavi A, Dann R, Chawluk J, et al. Positron emission tomography imaging of regional cerebral glucose metabolism. Semin Nucl Med. 1986;16:1.
10.
go back to reference Theodore W, Newmark M, Sato S, et al. 18F-fluorodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann Neurol. 1983;14:4. Theodore W, Newmark M, Sato S, et al. 18F-fluorodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann Neurol. 1983;14:4.
11.
go back to reference Theodore WH, Sato S, Kufta C, et al. Temporal lobectomy for uncontrolled seizures: the role of positron emission tomography. Ann Neurol. 1992;32:6. Theodore WH, Sato S, Kufta C, et al. Temporal lobectomy for uncontrolled seizures: the role of positron emission tomography. Ann Neurol. 1992;32:6.
12.
go back to reference Delbeke D, Lawrence SK, Abou-Khalil BW, et al. Postsurgical outcome of patients with uncontrolled complex partial seizures and temporal lobe hypometabolism on 18F-FDG-positron emission tomography. Investig Radiol. 1996;31:261−66. Delbeke D, Lawrence SK, Abou-Khalil BW, et al. Postsurgical outcome of patients with uncontrolled complex partial seizures and temporal lobe hypometabolism on 18F-FDG-positron emission tomography. Investig Radiol. 1996;31:261−66.
13.
go back to reference Gaillard WD, Zeffiro T, Fazilat S, et al. Effect of valproate on cerebral metabolism and blood flow: an 18F-2-deoxyglucose and 15O water positron emission tomography study. Epilepsia. 1996;37:6. Gaillard WD, Zeffiro T, Fazilat S, et al. Effect of valproate on cerebral metabolism and blood flow: an 18F-2-deoxyglucose and 15O water positron emission tomography study. Epilepsia. 1996;37:6.
14.
go back to reference Theodore WH. Antiepileptic drugs and cerebral glucose metabolism. Epilepsia. 1988;29:2. Theodore WH. Antiepileptic drugs and cerebral glucose metabolism. Epilepsia. 1988;29:2.
15.
go back to reference Radtke RA, Hanson MW, Hoffman JM, et al. Temporal lobe hypometabolism on PET: predictor of seizure control after temporal lobectomy. Neurology. 1993;43. Radtke RA, Hanson MW, Hoffman JM, et al. Temporal lobe hypometabolism on PET: predictor of seizure control after temporal lobectomy. Neurology. 1993;43.
16.
go back to reference Manno EM, Sperling MR, Ding X, et al. Predictors of outcome after anterior temporal lobectomy: positron emission tomography. Neurology. 1994;44:2331−336. Manno EM, Sperling MR, Ding X, et al. Predictors of outcome after anterior temporal lobectomy: positron emission tomography. Neurology. 1994;44:2331−336. 
17.
go back to reference Salanova V, Markand O, Worth R, et al. FDG-PET and MRI in temporal lobe epilepsy: relationship to febrile seizures, hippocampal sclerosis and outcome. Acta Neurol Scand. 1998;97:3. Salanova V, Markand O, Worth R, et al. FDG-PET and MRI in temporal lobe epilepsy: relationship to febrile seizures, hippocampal sclerosis and outcome. Acta Neurol Scand. 1998;97:3.
18.
go back to reference Willmann O, Wennberg R, May T, et al. The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy: a meta-analysis. Seizure. 2007;16:6. Willmann O, Wennberg R, May T, et al. The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy: a meta-analysis. Seizure. 2007;16:6.
19.
go back to reference Choi JY, Kim SJ, Hong SB, et al. Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy. Eur J Nucl Med Mol Imaging. 2003;30:4. Choi JY, Kim SJ, Hong SB, et al. Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy. Eur J Nucl Med Mol Imaging. 2003;30:4.
20.
go back to reference Wong CH, Bleasel A, Wen L, et al. The topography and significance of extratemporal hypometabolism in refractory mesial temporal lobe epilepsy examined by FDG-PET. Epilepsia. 2010;51:8. Wong CH, Bleasel A, Wen L, et al. The topography and significance of extratemporal hypometabolism in refractory mesial temporal lobe epilepsy examined by FDG-PET. Epilepsia. 2010;51:8.
21.
go back to reference Leiderman DB, Albert P, Balish M, Bromfield E, et al. The dynamics of metabolic change following seizures as measured by positron emission tomography with fludeoxyglucose F18. Arch Neurol. 1994;51:9. Leiderman DB, Albert P, Balish M, Bromfield E, et al. The dynamics of metabolic change following seizures as measured by positron emission tomography with fludeoxyglucose F18. Arch Neurol. 1994;51:9.
22.
go back to reference Theodore WH, Dorwart R, Holmes M, et al. Neuroimaging in refractory partial seizures: comparison of PET, CT, and MRI. Neurology. 1986;36:6. Theodore WH, Dorwart R, Holmes M, et al. Neuroimaging in refractory partial seizures: comparison of PET, CT, and MRI. Neurology. 1986;36:6.
23.
go back to reference Knopman AA, Wong CH, Stevenson RJ, et al. The relationship between neuropsychological functioning and FDG-PET hypometabolism in intractable mesial temporal lobe epilepsy. Epilepsy Behav. 2015;44:136−42. Knopman AA, Wong CH, Stevenson RJ, et al. The relationship between neuropsychological functioning and FDG-PET hypometabolism in intractable mesial temporal lobe epilepsy. Epilepsy Behav. 2015;44:136−42.
24.
go back to reference Lee TM, Yip JT, Jones-Gotman M. Memory deficits after resection from left or right anterior temporal lobe in humans: a meta-analytic review. Epilepsia. 2002;43:3. Lee TM, Yip JT, Jones-Gotman M. Memory deficits after resection from left or right anterior temporal lobe in humans: a meta-analytic review. Epilepsia. 2002;43:3.
25.
go back to reference Joo EY, Hong SB, Han HJ, et al. Postoperative alteration of cerebral glucose metabolism in mesial temporal lobe epilepsy. Brain. 2005;128:8. Joo EY, Hong SB, Han HJ, et al. Postoperative alteration of cerebral glucose metabolism in mesial temporal lobe epilepsy. Brain. 2005;128:8.
26.
go back to reference Tellez-Zenteno JF, Dhar R, Hernandez-Ronquillo L, et al. Long-term outcomes in epilepsy surgery: antiepileptic drugs, mortality, cognitive and psychosocial aspects. Brain. 2007;130:3.CrossRef Tellez-Zenteno JF, Dhar R, Hernandez-Ronquillo L, et al. Long-term outcomes in epilepsy surgery: antiepileptic drugs, mortality, cognitive and psychosocial aspects. Brain. 2007;130:3.CrossRef
27.
go back to reference Takaya S, Mikuni N, Mitsueda T, et al. Improved cerebral function in mesial temporal lobe epilepsy after subtemporal amygdalohippocampectomy. Brain. 2009;132:1. Takaya S, Mikuni N, Mitsueda T, et al. Improved cerebral function in mesial temporal lobe epilepsy after subtemporal amygdalohippocampectomy. Brain. 2009;132:1.
28.
go back to reference Nelissen N, Van Paesschen W, Baete K, et al. Correlations of interictal FDG-PET metabolism and ictal SPECT perfusion changes in human temporal lobe epilepsy with hippocampal sclerosis. NeuroImage. 2006;32:2. Nelissen N, Van Paesschen W, Baete K, et al. Correlations of interictal FDG-PET metabolism and ictal SPECT perfusion changes in human temporal lobe epilepsy with hippocampal sclerosis. NeuroImage. 2006;32:2.
29.
go back to reference Valentijn SAM, van Boxtel MPJ, Van Hooren SA, et al. Change in sensory functioning predicts change in cognitive functioning: results from a 6-year follow-up in the Maastricht Aging Study. J Am Geriatr Soc. 2005;53:3. Valentijn SAM, van Boxtel MPJ, Van Hooren SA, et al. Change in sensory functioning predicts change in cognitive functioning: results from a 6-year follow-up in the Maastricht Aging Study. J Am Geriatr Soc. 2005;53:3.
30.
go back to reference Van der Elst W, Van Boxtel MP, Van Breukelen GJ, et al. The Stroop color-word test: influence of age, sex, and education; and normative data for a large sample across the adult age range. Assessment. 2006;13:1.CrossRef Van der Elst W, Van Boxtel MP, Van Breukelen GJ, et al. The Stroop color-word test: influence of age, sex, and education; and normative data for a large sample across the adult age range. Assessment. 2006;13:1.CrossRef
31.
go back to reference Goffin K, Van Paesschen W, Dupont P, et al. Anatomy-based reconstruction of FDG-PET images with implicit partial volume correction improves detection of hypometabolic regions in patients with epilepsy due to focal cortical dysplasia diagnosed on MRI. Eur J Nucl Med Mol Imaging. 2010;37:6. Goffin K, Van Paesschen W, Dupont P, et al. Anatomy-based reconstruction of FDG-PET images with implicit partial volume correction improves detection of hypometabolic regions in patients with epilepsy due to focal cortical dysplasia diagnosed on MRI. Eur J Nucl Med Mol Imaging. 2010;37:6.
32.
go back to reference Vunckx K, Dupont P, Goffin K, et al. Voxel-based comparison of state-of-the-art reconstruction algorithms for 18F-FDG PET brain imaging using simulated and clinical data. NeuroImage. 2014;102:2. Vunckx K, Dupont P, Goffin K, et al. Voxel-based comparison of state-of-the-art reconstruction algorithms for 18F-FDG PET brain imaging using simulated and clinical data. NeuroImage. 2014;102:2.
33.
go back to reference Kolb B, Gibb R, van der Kooy D, et al. Cortical and striatal structure and connectivity are altered by neonatal hemidecortication in rats. J Comp Neurol. 1992;322:3. Kolb B, Gibb R, van der Kooy D, et al. Cortical and striatal structure and connectivity are altered by neonatal hemidecortication in rats. J Comp Neurol. 1992;322:3.
34.
go back to reference Zanão T, Martins Lopes T, Mariano Junior R, Machado Campos B, Yasuda C, Cendes F. Interactions between default mode network and memory performance in patients with temporal lobe epilepsy and controls. Barcelona: International epilepsy congress; 2017. p. 0684. Zanão T, Martins Lopes T, Mariano Junior R, Machado Campos B, Yasuda C, Cendes F. Interactions between default mode network and memory performance in patients with temporal lobe epilepsy and controls. Barcelona: International epilepsy congress; 2017. p. 0684.
35.
go back to reference Bonelli SB, Powell R, Thompson PJ, et al. Hippocampal activation correlates with visual confrontation naming: fMRI findings in controls and patients with temporal lobe epilepsy. Epilepsy Res. 2011;95:3.CrossRef Bonelli SB, Powell R, Thompson PJ, et al. Hippocampal activation correlates with visual confrontation naming: fMRI findings in controls and patients with temporal lobe epilepsy. Epilepsy Res. 2011;95:3.CrossRef
36.
go back to reference Fridriksson J, Moser D, Bonilha L, et al. Neural correlates of phonological and semantic-based anomia treatment in aphasia. Neuropsychologia. 2007;45:8. Fridriksson J, Moser D, Bonilha L, et al. Neural correlates of phonological and semantic-based anomia treatment in aphasia. Neuropsychologia. 2007;45:8.
37.
go back to reference Heath S, Mcmahon K, Nickels L, et al. Facilitation of naming in aphasia with auditory repetition: an investigation of neurocognitive mechanisms. Neuropsychologia. 2013;51:8. Heath S, Mcmahon K, Nickels L, et al. Facilitation of naming in aphasia with auditory repetition: an investigation of neurocognitive mechanisms. Neuropsychologia. 2013;51:8.
38.
go back to reference Frings L, Dressel K, Abel S, et al. Reduced precuneus deactivation during object naming in patients with mild cognitive impairment, Alzheimer’s disease, and frontotemporal lobar degeneration. Dement Geriatr Cogn Disord. 2010;30:4.CrossRef Frings L, Dressel K, Abel S, et al. Reduced precuneus deactivation during object naming in patients with mild cognitive impairment, Alzheimer’s disease, and frontotemporal lobar degeneration. Dement Geriatr Cogn Disord. 2010;30:4.CrossRef
39.
go back to reference Gess JL, Denham M, Pennell PB, et al. Remediation of a naming deficit following left temporal lobe epilepsy surgery. Appl Neuropsychol Adult. 2014;21:3.CrossRef Gess JL, Denham M, Pennell PB, et al. Remediation of a naming deficit following left temporal lobe epilepsy surgery. Appl Neuropsychol Adult. 2014;21:3.CrossRef
Metadata
Title
Correlation of neuropsychological and metabolic changes after epilepsy surgery in patients with left mesial temporal lobe epilepsy with hippocampal sclerosis
Authors
Canan Güvenç
Patrick Dupont
Jan Van den Stock
Laura Seynaeve
Kathleen Porke
Eva Dries
Karen Van Bouwel
Johannes van Loon
Tom Theys
Karolien E. Goffin
Wim Van Paesschen
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2018
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-018-0385-5

Other articles of this Issue 1/2018

EJNMMI Research 1/2018 Go to the issue