Skip to main content
Top
Published in: EJNMMI Research 1/2018

Open Access 01-12-2018 | Original research

Labeling of DOTA-conjugated HPMA-based polymers with trivalent metallic radionuclides for molecular imaging

Authors: Elisabeth Eppard, Ana de la Fuente, Nicole Mohr, Mareli Allmeroth, Rudolf Zentel, Matthias Miederer, Stefanie Pektor, Frank Rösch

Published in: EJNMMI Research | Issue 1/2018

Login to get access

Abstract

Background

In this work, the in vitro and in vivo stabilities and the pharmacology of HPMA-made homopolymers were studied by means of radiometal-labeled derivatives. Aiming to identify the fewer amount and the optimal DOTA-linker structure that provides quantitative labeling yields, diverse DOTA-linker systems were conjugated in different amounts to HPMA homopolymers to coordinate trivalent radiometals Me(III)* = gallium-68, scandium-44, and lutetium-177.

Results

Short linkers and as low as 1.6% DOTA were enough to obtain labeling yields > 90%. Alkoxy linkers generally exhibited lower labeling yields than alkane analogues despite of similar chain length and DOTA incorporation rate. High stability of the radiolabel in all examined solutions was observed for all conjugates. Labeling with scandium-44 allowed for in vivo PET imaging and ex vivo measurements of organ distribution for up to 24 h.

Conclusions

This study confirms the principle applicability of DOTA-HPMA conjugates for labeling with different trivalent metallic radionuclides allowing for diagnosis and therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Arranja AG, Pathak V, Lammers T, Shi Y. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res. 2017;115:87–95.CrossRefPubMed Arranja AG, Pathak V, Lammers T, Shi Y. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res. 2017;115:87–95.CrossRefPubMed
2.
go back to reference Landesman-Milo D, Peer D. Transforming nanomedicines from lab scale production to novel clinical modality. Bioconjug Chem. 2016;27(4):855–62.CrossRefPubMed Landesman-Milo D, Peer D. Transforming nanomedicines from lab scale production to novel clinical modality. Bioconjug Chem. 2016;27(4):855–62.CrossRefPubMed
3.
go back to reference Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11(17–18):812–8.CrossRefPubMed Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11(17–18):812–8.CrossRefPubMed
4.
go back to reference Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–9.CrossRefPubMed Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–9.CrossRefPubMed
5.
go back to reference Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T, et al. Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res. 1998;89(3):307–14.CrossRefPubMed Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T, et al. Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res. 1998;89(3):307–14.CrossRefPubMed
6.
go back to reference Kopeček J, Baẑilová H. Poly[N-(2-hydroxypropyl)methacrylamide]—I. Radical polymerization and copolymerization. Eur Polym J. 1973;9(1):7–14.CrossRef Kopeček J, Baẑilová H. Poly[N-(2-hydroxypropyl)methacrylamide]—I. Radical polymerization and copolymerization. Eur Polym J. 1973;9(1):7–14.CrossRef
7.
go back to reference Bohdanecky M, Baẑilová H, Kopeček J. Poly[N-(2-hydroxypropyl)methacrylamide]—II: hydrodynamic properties of dilute solutions. Eur Polym J. 1974;10(5):405–10.CrossRef Bohdanecky M, Baẑilová H, Kopeček J. Poly[N-(2-hydroxypropyl)methacrylamide]—II: hydrodynamic properties of dilute solutions. Eur Polym J. 1974;10(5):405–10.CrossRef
8.
go back to reference Kopecek J, Sprincl L. Relationship between the structure and biocompatibility of hydrophilic gels. Polim Med. 1974;4(2):109–17.PubMed Kopecek J, Sprincl L. Relationship between the structure and biocompatibility of hydrophilic gels. Polim Med. 1974;4(2):109–17.PubMed
9.
go back to reference Kopecek J, Sprincl L, Bazilova H, Vacik J. Biological tolerance of poly(N-substituted acrylamides). J Biomed Mater Res. 1973;7(1):111–21.CrossRefPubMed Kopecek J, Sprincl L, Bazilova H, Vacik J. Biological tolerance of poly(N-substituted acrylamides). J Biomed Mater Res. 1973;7(1):111–21.CrossRefPubMed
10.
go back to reference Kopecek J, Sprincl L, Lim D. New types of synthetic infusion solutions. I. Investigation of the effect of solutions of some hydrophilic polymers on blood. J Biomed Mater Res. 1973;7(2):179–91.CrossRefPubMed Kopecek J, Sprincl L, Lim D. New types of synthetic infusion solutions. I. Investigation of the effect of solutions of some hydrophilic polymers on blood. J Biomed Mater Res. 1973;7(2):179–91.CrossRefPubMed
11.
go back to reference Sprincl L, Kopecek J, Lim D. Effect of porosity of heterogeneous poly(glycol monomethacrylate) gels on the healing-in of test implants. J Biomed Mater Res. 1971;5(5):447–58.CrossRefPubMed Sprincl L, Kopecek J, Lim D. Effect of porosity of heterogeneous poly(glycol monomethacrylate) gels on the healing-in of test implants. J Biomed Mater Res. 1971;5(5):447–58.CrossRefPubMed
12.
go back to reference Sprincl L, Vacik J, Kopecek J. Biological tolerance of ionogenic hydrophilic gels. J Biomed Mater Res. 1973;7(1):123–36.CrossRefPubMed Sprincl L, Vacik J, Kopecek J. Biological tolerance of ionogenic hydrophilic gels. J Biomed Mater Res. 1973;7(1):123–36.CrossRefPubMed
13.
go back to reference Ulbrich K, Sprincl L, Kopecek J. Biocompatibility of poly (2,4-pentadiene-1-ol). J Biomed Mater Res. 1974;8(2):155–61.CrossRefPubMed Ulbrich K, Sprincl L, Kopecek J. Biocompatibility of poly (2,4-pentadiene-1-ol). J Biomed Mater Res. 1974;8(2):155–61.CrossRefPubMed
14.
go back to reference Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin Cancer Res. 1999;5(1):83–94.PubMed Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin Cancer Res. 1999;5(1):83–94.PubMed
15.
go back to reference Meerum Terwogt JM, ten Bokkel Huinink WW, Schellens JH, Schot M, Mandjes IA, Zurlo MG, et al. Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anti-Cancer Drugs. 2001;12(4):315–23.CrossRefPubMed Meerum Terwogt JM, ten Bokkel Huinink WW, Schellens JH, Schot M, Mandjes IA, Zurlo MG, et al. Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anti-Cancer Drugs. 2001;12(4):315–23.CrossRefPubMed
16.
go back to reference Schoemaker NE, van Kesteren C, Rosing H, Jansen S, Swart M, Lieverst J, et al. A phase I and pharmacokinetic study of MAG-CPT, a water-soluble polymer conjugate of camptothecin. Br J Cancer. 2002;87(6):608–14.CrossRefPubMedPubMedCentral Schoemaker NE, van Kesteren C, Rosing H, Jansen S, Swart M, Lieverst J, et al. A phase I and pharmacokinetic study of MAG-CPT, a water-soluble polymer conjugate of camptothecin. Br J Cancer. 2002;87(6):608–14.CrossRefPubMedPubMedCentral
17.
go back to reference Kopecek J, Kopeckova P, Minko T, Lu Z. HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur J Pharm Biopharm. 2000;50(1):61–81.CrossRefPubMed Kopecek J, Kopeckova P, Minko T, Lu Z. HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur J Pharm Biopharm. 2000;50(1):61–81.CrossRefPubMed
18.
go back to reference Sprincl L, Kopecek J, Vacik J, Lim D. Biological tolerance of poly(N-substituted methacrylamides). J Biomed Mater Res. 1971;5(3):197–205.CrossRefPubMed Sprincl L, Kopecek J, Vacik J, Lim D. Biological tolerance of poly(N-substituted methacrylamides). J Biomed Mater Res. 1971;5(3):197–205.CrossRefPubMed
19.
go back to reference Chidambaram M, Manavalan R, Kathiresan K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci. 2011;14(1):67–77.CrossRefPubMed Chidambaram M, Manavalan R, Kathiresan K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci. 2011;14(1):67–77.CrossRefPubMed
20.
go back to reference Allmeroth M, Moderegger D, Biesalski B, Koynov K, Rosch F, Thews O, et al. Modifying the body distribution of HPMA-based copolymers by molecular weight and aggregate formation. Biomacromolecules. 2011;12(7):2841–9.CrossRefPubMed Allmeroth M, Moderegger D, Biesalski B, Koynov K, Rosch F, Thews O, et al. Modifying the body distribution of HPMA-based copolymers by molecular weight and aggregate formation. Biomacromolecules. 2011;12(7):2841–9.CrossRefPubMed
21.
go back to reference Allmeroth M, Moderegger D, Gundel D, Buchholz HG, Mohr N, Koynov K, et al. PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: a quantitative study using radiolabeling and positron emission tomography. J Control Release. 2013;172(1):77–85.CrossRefPubMed Allmeroth M, Moderegger D, Gundel D, Buchholz HG, Mohr N, Koynov K, et al. PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: a quantitative study using radiolabeling and positron emission tomography. J Control Release. 2013;172(1):77–85.CrossRefPubMed
22.
go back to reference Breeman WA, de Jong M, de Blois E, Bernard BF, Konijnenberg M, Krenning EP. Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med Mol Imaging. 2005;32(4):478–85.CrossRefPubMed Breeman WA, de Jong M, de Blois E, Bernard BF, Konijnenberg M, Krenning EP. Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med Mol Imaging. 2005;32(4):478–85.CrossRefPubMed
23.
go back to reference Mueller D, Klette I, Baum RP, Gottschaldt M, Schultz MK, Breeman WA. Simplified NaCl based (68)Ga concentration and labeling procedure for rapid synthesis of (68)Ga radiopharmaceuticals in high radiochemical purity. Bioconjug Chem. 2012;23(8):1712–7.CrossRefPubMed Mueller D, Klette I, Baum RP, Gottschaldt M, Schultz MK, Breeman WA. Simplified NaCl based (68)Ga concentration and labeling procedure for rapid synthesis of (68)Ga radiopharmaceuticals in high radiochemical purity. Bioconjug Chem. 2012;23(8):1712–7.CrossRefPubMed
24.
go back to reference Meyer GJ, Macke H, Schuhmacher J, Knapp WH, Hofmann M. 68Ga-labelled DOTA-derivatised peptide ligands. Eur J Nucl Med Mol Imaging. 2004;31(8):1097–104.CrossRefPubMed Meyer GJ, Macke H, Schuhmacher J, Knapp WH, Hofmann M. 68Ga-labelled DOTA-derivatised peptide ligands. Eur J Nucl Med Mol Imaging. 2004;31(8):1097–104.CrossRefPubMed
25.
go back to reference Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med. 2007;48(10):1741–8.CrossRefPubMed Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med. 2007;48(10):1741–8.CrossRefPubMed
26.
go back to reference Eppard E, Wuttke M, Nicodemus PL, Rosch F. Ethanol-based post-processing of generator-derived (6)(8)Ga toward kit-type preparation of (6)(8)Ga-radiopharmaceuticals. J Nucl Med. 2014;55(6):1023–8.CrossRefPubMed Eppard E, Wuttke M, Nicodemus PL, Rosch F. Ethanol-based post-processing of generator-derived (6)(8)Ga toward kit-type preparation of (6)(8)Ga-radiopharmaceuticals. J Nucl Med. 2014;55(6):1023–8.CrossRefPubMed
27.
go back to reference Rosch F, Baum RP. Generator-based PET radiopharmaceuticals for molecular imaging of tumours: on the way to THERANOSTICS. Dalton Trans. 2011;40(23):6104–11.CrossRefPubMed Rosch F, Baum RP. Generator-based PET radiopharmaceuticals for molecular imaging of tumours: on the way to THERANOSTICS. Dalton Trans. 2011;40(23):6104–11.CrossRefPubMed
28.
go back to reference Filosofov DV, Loktionova NS, Rösch F. A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochimica Acta Int J Chem Aspects Nucl Sci Technol. 2010;98:149–56. Filosofov DV, Loktionova NS, Rösch F. A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochimica Acta Int J Chem Aspects Nucl Sci Technol. 2010;98:149–56.
29.
go back to reference Pruszynski M, Loktionova NS, Filosofov DV, Rosch F. Post-elution processing of (44)Ti/(44)Sc generator-derived (44)Sc for clinical application. Appl Radiat Isot. 2010;68(9):1636–41.CrossRefPubMed Pruszynski M, Loktionova NS, Filosofov DV, Rosch F. Post-elution processing of (44)Ti/(44)Sc generator-derived (44)Sc for clinical application. Appl Radiat Isot. 2010;68(9):1636–41.CrossRefPubMed
30.
go back to reference Liu Z, Ma T, Liu H, Jin Z, Sun X, Zhao H, et al. 177Lu-labeled antibodies for EGFR-targeted SPECT/CT imaging and radioimmunotherapy in a preclinical head and neck carcinoma model. Mol Pharm. 2014;11(3):800–7.CrossRefPubMed Liu Z, Ma T, Liu H, Jin Z, Sun X, Zhao H, et al. 177Lu-labeled antibodies for EGFR-targeted SPECT/CT imaging and radioimmunotherapy in a preclinical head and neck carcinoma model. Mol Pharm. 2014;11(3):800–7.CrossRefPubMed
31.
go back to reference Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, et al. Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol. 2002;20(6):1668–76.CrossRefPubMed Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, et al. Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol. 2002;20(6):1668–76.CrossRefPubMed
32.
go back to reference Mitra A, Nan A, Ghandehari H, McNeill E, Mulholland J, Line BR. Technetium-99m-labeled N-(2-hydroxypropyl) methacrylamide copolymers: synthesis, characterization, and in vivo biodistribution. Pharm Res. 2004;21(7):1153–9.CrossRefPubMed Mitra A, Nan A, Ghandehari H, McNeill E, Mulholland J, Line BR. Technetium-99m-labeled N-(2-hydroxypropyl) methacrylamide copolymers: synthesis, characterization, and in vivo biodistribution. Pharm Res. 2004;21(7):1153–9.CrossRefPubMed
33.
go back to reference Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest. 2011;121(7):2768–80.CrossRefPubMedPubMedCentral Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest. 2011;121(7):2768–80.CrossRefPubMedPubMedCentral
34.
go back to reference Mohr N, Barz M, Forst R, Zentel R. A deeper insight into the postpolymerization modification of polypenta fluorophenyl methacrylates to poly(n-(2-hydroxypropyl) methacrylamide). Macromol Rapid Commun. 2014;35(17):1522–7.CrossRefPubMed Mohr N, Barz M, Forst R, Zentel R. A deeper insight into the postpolymerization modification of polypenta fluorophenyl methacrylates to poly(n-(2-hydroxypropyl) methacrylamide). Macromol Rapid Commun. 2014;35(17):1522–7.CrossRefPubMed
35.
go back to reference Pruszynski M, Majkowska-Pilip A, Loktionova NS, Eppard E, Roesch F. Radiolabeling of DOTATOC with the long-lived positron emitter 44Sc. Appl Radiat Isot. 2012;70(6):974–9.CrossRefPubMed Pruszynski M, Majkowska-Pilip A, Loktionova NS, Eppard E, Roesch F. Radiolabeling of DOTATOC with the long-lived positron emitter 44Sc. Appl Radiat Isot. 2012;70(6):974–9.CrossRefPubMed
36.
go back to reference Roesch F, Perez-Malo CM. Improved efficacy of synthesis of 68Ga radiopharmaceuticals in mixtures of aqueous solution and non-aqueous solvents. J Nucl Med. 2013;54(supplement 2):163. Roesch F, Perez-Malo CM. Improved efficacy of synthesis of 68Ga radiopharmaceuticals in mixtures of aqueous solution and non-aqueous solvents. J Nucl Med. 2013;54(supplement 2):163.
37.
go back to reference Van Oss CJ, Good RJ, Chaudhury MK. The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J Colloid Interface Sci. 1986;111(2):378–90.CrossRef Van Oss CJ, Good RJ, Chaudhury MK. The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J Colloid Interface Sci. 1986;111(2):378–90.CrossRef
38.
go back to reference Nuhn L, Barz M, Zentel R. New perspectives of HPMA-based copolymers derived by post-polymerization modification. Macromol Biosci. 2014;14(5):607–18.CrossRefPubMed Nuhn L, Barz M, Zentel R. New perspectives of HPMA-based copolymers derived by post-polymerization modification. Macromol Biosci. 2014;14(5):607–18.CrossRefPubMed
39.
go back to reference Mohr N, Kappel C, Kramer S, Bros M, Grabbe S, Zentel R. Targeting cells of the immune system: mannosylated HPMA-LMA block-copolymer micelles for targeting of dendritic cells. Nanomedicine (London, England). 2016;11(20):2679–97.CrossRef Mohr N, Kappel C, Kramer S, Bros M, Grabbe S, Zentel R. Targeting cells of the immune system: mannosylated HPMA-LMA block-copolymer micelles for targeting of dendritic cells. Nanomedicine (London, England). 2016;11(20):2679–97.CrossRef
40.
go back to reference Mei KC, Bai J, Lorrio S, Wang JT, Al-Jamal KT. Investigating the effect of tumor vascularization on magnetic targeting in vivo using retrospective design of experiment. Biomaterials. 2016;106:276–85.CrossRefPubMedPubMedCentral Mei KC, Bai J, Lorrio S, Wang JT, Al-Jamal KT. Investigating the effect of tumor vascularization on magnetic targeting in vivo using retrospective design of experiment. Biomaterials. 2016;106:276–85.CrossRefPubMedPubMedCentral
41.
go back to reference Lammers T, Kuhnlein R, Kissel M, Subr V, Etrych T, Pola R, et al. Effect of physicochemical modification on the biodistribution and tumor accumulation of HPMA copolymers. J Control Release. 2005;110(1):103–18.CrossRefPubMed Lammers T, Kuhnlein R, Kissel M, Subr V, Etrych T, Pola R, et al. Effect of physicochemical modification on the biodistribution and tumor accumulation of HPMA copolymers. J Control Release. 2005;110(1):103–18.CrossRefPubMed
42.
go back to reference Hemmelmann M, Mohr K, Fischer K, Zentel R, Schmidt M. Interaction of pHPMA-pLMA copolymers with human blood serum and its components. Mol Pharm. 2013;10(10):3769–75.CrossRefPubMed Hemmelmann M, Mohr K, Fischer K, Zentel R, Schmidt M. Interaction of pHPMA-pLMA copolymers with human blood serum and its components. Mol Pharm. 2013;10(10):3769–75.CrossRefPubMed
43.
go back to reference Clemens-Hemmelmann M, Kuffner C, Metz V, Kircher L, Schmitt U, Hiemke C, et al. Amphiphilic copolymers shuttle drugs across the blood-brain barrier. Macromol Biosci. 2016;16(5):655–65.CrossRefPubMed Clemens-Hemmelmann M, Kuffner C, Metz V, Kircher L, Schmitt U, Hiemke C, et al. Amphiphilic copolymers shuttle drugs across the blood-brain barrier. Macromol Biosci. 2016;16(5):655–65.CrossRefPubMed
44.
go back to reference Hemmelmann M, Metz VV, Koynov K, Blank K, Postina R, Zentel R. Amphiphilic HPMA-LMA copolymers increase the transport of rhodamine 123 across a BBB model without harming its barrier integrity. J Control Release. 2012;163(2):170–7.CrossRefPubMed Hemmelmann M, Metz VV, Koynov K, Blank K, Postina R, Zentel R. Amphiphilic HPMA-LMA copolymers increase the transport of rhodamine 123 across a BBB model without harming its barrier integrity. J Control Release. 2012;163(2):170–7.CrossRefPubMed
45.
go back to reference Gundel D, Allmeroth M, Reime S, Zentel R, Thews O. Endocytotic uptake of HPMA-based polymers by different cancer cells: impact of extracellular acidosis and hypoxia. Int J Nanomedicine. 2017;12:5571–84.CrossRefPubMedPubMedCentral Gundel D, Allmeroth M, Reime S, Zentel R, Thews O. Endocytotic uptake of HPMA-based polymers by different cancer cells: impact of extracellular acidosis and hypoxia. Int J Nanomedicine. 2017;12:5571–84.CrossRefPubMedPubMedCentral
46.
go back to reference Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA. What the cell “sees” in bionanoscience. J Am Chem Soc. 2010;132(16):5761–8.CrossRefPubMed Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA. What the cell “sees” in bionanoscience. J Am Chem Soc. 2010;132(16):5761–8.CrossRefPubMed
47.
go back to reference Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8(10):772–81.CrossRefPubMed Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8(10):772–81.CrossRefPubMed
48.
go back to reference Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano. 2011;5(9):7155–67.CrossRefPubMed Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano. 2011;5(9):7155–67.CrossRefPubMed
49.
go back to reference Allemann E, Gravel P, Leroux JC, Balant L, Gurny R. Kinetics of blood component adsorption on poly(D,L-lactic acid) nanoparticles: evidence of complement C3 component involvement. J Biomed Mater Res. 1997;37(2):229–34.CrossRefPubMed Allemann E, Gravel P, Leroux JC, Balant L, Gurny R. Kinetics of blood component adsorption on poly(D,L-lactic acid) nanoparticles: evidence of complement C3 component involvement. J Biomed Mater Res. 1997;37(2):229–34.CrossRefPubMed
50.
go back to reference Tappertzhofen K, Bednarczyk M, Koynov K, Bros M, Grabbe S, Zentel R. Toward anticancer Immunotherapeutics: well-defined polymer-antibody conjugates for selective dendritic cell targeting. Macromol Biosci. 2014;14(10):1444–57.CrossRefPubMed Tappertzhofen K, Bednarczyk M, Koynov K, Bros M, Grabbe S, Zentel R. Toward anticancer Immunotherapeutics: well-defined polymer-antibody conjugates for selective dendritic cell targeting. Macromol Biosci. 2014;14(10):1444–57.CrossRefPubMed
51.
go back to reference Nagy G, Denes N, Kis A, Szabo JP, Berenyi E, Garai I, et al. Preclinical evaluation of melanocortin-1 receptor (MC1-R) specific 68Ga- and 44Sc-labeled DOTA-NAPamide in melanoma imaging. Eur J Pharm Sci. 2017;106:336–44.CrossRefPubMed Nagy G, Denes N, Kis A, Szabo JP, Berenyi E, Garai I, et al. Preclinical evaluation of melanocortin-1 receptor (MC1-R) specific 68Ga- and 44Sc-labeled DOTA-NAPamide in melanoma imaging. Eur J Pharm Sci. 2017;106:336–44.CrossRefPubMed
Metadata
Title
Labeling of DOTA-conjugated HPMA-based polymers with trivalent metallic radionuclides for molecular imaging
Authors
Elisabeth Eppard
Ana de la Fuente
Nicole Mohr
Mareli Allmeroth
Rudolf Zentel
Matthias Miederer
Stefanie Pektor
Frank Rösch
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2018
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-018-0372-x

Other articles of this Issue 1/2018

EJNMMI Research 1/2018 Go to the issue