Skip to main content
Top
Published in: EJNMMI Research 1/2018

Open Access 01-12-2018 | Original research

Assessment of target-mediated uptake with immuno-PET: analysis of a phase I clinical trial with an anti-CD44 antibody

Authors: Yvonne W. S. Jauw, Marc C. Huisman, Tapan K. Nayak, Danielle J. Vugts, Randolph Christen, Valerie Meresse Naegelen, Dominik Ruettinger, Florian Heil, Adriaan A. Lammertsma, Henk M. W. Verheul, Otto S. Hoekstra, Guus A. M. S. van Dongen, C. Willemien Menke-van der Houven van Oordt

Published in: EJNMMI Research | Issue 1/2018

Login to get access

Abstract

Background

Ideally, monoclonal antibodies provide selective treatment by targeting the tumour, without affecting normal tissues. Therefore, antibody imaging is of interest, preferably in early stages of drug development. However, the imaging signal consists of specific, as well as non-specific, uptake. The aim of this study was to assess specific, target-mediated uptake in normal tissues, with immuno-PET in a phase I dose escalation study, using the anti-CD44 antibody RG7356 as example.

Results

Data from thirteen patients with CD44-expressing solid tumours included in an imaging sub-study of a phase I dose escalation clinical trial using the anti-CD44 antibody RG7356 was analysed. 89Zirconium-labelled RG7356 (1 mg; 37 MBq) was administered after a variable dose of unlabelled RG7356 (0 to 675 mg). Tracer uptake in normal tissues (liver, spleen, kidney, lung, bone marrow, brain and blood pool) was used to calculate the area under the time antibody concentration curve (AUC) and expressed as tissue-to-blood AUC ratios.
Within the dose range of 1 to 450 mg, tissue-to-blood AUC ratios decreased from 10.6 to 0.75 ± 0.16 for the spleen, 7.5 to 0.86 ± 0.18 for the liver, 3.6 to 0.48 ± 0.13 for the bone marrow, 0.69 to 0.26 ± 0.1 for the lung and 1.29 to 0.56 ± 0.14 for the kidney, indicating dose-dependent uptake. In all patients receiving ≥ 450 mg (n = 7), tumour uptake of the antibody was observed.

Conclusions

This study demonstrates how immuno-PET in a dose escalation study provides a non-invasive technique to quantify dose-dependent uptake in normal tissues, indicating specific, target-mediated uptake.
Appendix
Available only for authorised users
Literature
7.
go back to reference Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4:33–45.CrossRefPubMed Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4:33–45.CrossRefPubMed
8.
go back to reference Toole BP. Hyaluronan-CD44 interactions in cancer: paradoxes and possibilities. Clin Cancer Res. 2009;24:7462–8.CrossRef Toole BP. Hyaluronan-CD44 interactions in cancer: paradoxes and possibilities. Clin Cancer Res. 2009;24:7462–8.CrossRef
9.
go back to reference Vugts DJ, Heuveling DA, Stigter-van Walsum M, Weigand S, Bergstrom M, van Dongen GA, et al. Preclinical evaluation of 89Zr-labeled anti-CD44 monoclonal antibody RG7356 in mice and cynomolgus monkeys: prelude to phase 1 clinical studies. MAbs. 2014;6:567–75.CrossRefPubMed Vugts DJ, Heuveling DA, Stigter-van Walsum M, Weigand S, Bergstrom M, van Dongen GA, et al. Preclinical evaluation of 89Zr-labeled anti-CD44 monoclonal antibody RG7356 in mice and cynomolgus monkeys: prelude to phase 1 clinical studies. MAbs. 2014;6:567–75.CrossRefPubMed
10.
go back to reference Menke-van der Houven van Oordt CW, Gomez-Roca C, van Herpen C, Coveler AL, Mahalingam D, Verheul HM, et al. First-in-human phase I clinical trial of RG7356, an anti-CD44 humanized antibody, in patients with advanced, CD44-expressing solid tumours. Oncotarget. 2016;43:80046–58. https://doi.org/10.18632/oncotarget.11098. Menke-van der Houven van Oordt CW, Gomez-Roca C, van Herpen C, Coveler AL, Mahalingam D, Verheul HM, et al. First-in-human phase I clinical trial of RG7356, an anti-CD44 humanized antibody, in patients with advanced, CD44-expressing solid tumours. Oncotarget. 2016;43:80046–58. https://​doi.​org/​10.​18632/​oncotarget.​11098.
11.
go back to reference Verel I, Visser GW, Boellaard R, Stigter-van Walsum M, Snow GB, van Dongen GA. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med. 2003;44:1271–81.PubMed Verel I, Visser GW, Boellaard R, Stigter-van Walsum M, Snow GB, van Dongen GA. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med. 2003;44:1271–81.PubMed
17.
go back to reference Mackay CR, Terpe HJ, Stauder R, Marston WL, Stark H, Günthert U. Expression and modulation of CD44 variant isoforms in humans. J Cell Biol. 1994;124:71–82.CrossRefPubMed Mackay CR, Terpe HJ, Stauder R, Marston WL, Stark H, Günthert U. Expression and modulation of CD44 variant isoforms in humans. J Cell Biol. 1994;124:71–82.CrossRefPubMed
18.
go back to reference ICRP Publication 89. Basic anatomical and physiological data for use in radiological protection reference values. Ann ICRP. 2002;32:3–4.CrossRef ICRP Publication 89. Basic anatomical and physiological data for use in radiological protection reference values. Ann ICRP. 2002;32:3–4.CrossRef
19.
go back to reference Perk LR, Visser GW, Vosjan MJ, Stigter-van Walsum M, Tijink BM, Leemans CR, et al. 89Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals 90Y and 177Lu in tumour-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med. 2005;46:1898–906.PubMed Perk LR, Visser GW, Vosjan MJ, Stigter-van Walsum M, Tijink BM, Leemans CR, et al. 89Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals 90Y and 177Lu in tumour-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med. 2005;46:1898–906.PubMed
20.
go back to reference Börjesson PK, Jauw YW, Boellaard R, de Bree R, Comans EF, Roos JC, et al. Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin Cancer Res. 2006;12:2133–40.CrossRefPubMed Börjesson PK, Jauw YW, Boellaard R, de Bree R, Comans EF, Roos JC, et al. Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin Cancer Res. 2006;12:2133–40.CrossRefPubMed
21.
go back to reference Mcgeoch A, Menke-van der Houven van Oordt C, Bergstrom M, McSherry I, Smith D, Cleveland M, et al. ImmunoPET imaging to assess target engagement: experience from 89Zr-anti-HER3 mAb (GSK 2849330) in patients with solid tumors. EJNMMI. 2017;44:S314–5. Mcgeoch A, Menke-van der Houven van Oordt C, Bergstrom M, McSherry I, Smith D, Cleveland M, et al. ImmunoPET imaging to assess target engagement: experience from 89Zr-anti-HER3 mAb (GSK 2849330) in patients with solid tumors. EJNMMI. 2017;44:S314–5.
Metadata
Title
Assessment of target-mediated uptake with immuno-PET: analysis of a phase I clinical trial with an anti-CD44 antibody
Authors
Yvonne W. S. Jauw
Marc C. Huisman
Tapan K. Nayak
Danielle J. Vugts
Randolph Christen
Valerie Meresse Naegelen
Dominik Ruettinger
Florian Heil
Adriaan A. Lammertsma
Henk M. W. Verheul
Otto S. Hoekstra
Guus A. M. S. van Dongen
C. Willemien Menke-van der Houven van Oordt
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2018
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-018-0358-8

Other articles of this Issue 1/2018

EJNMMI Research 1/2018 Go to the issue