Skip to main content
Top
Published in: EJNMMI Research 1/2018

Open Access 01-12-2018 | Preliminary research

Positron emission tomography-magnetic resonance imaging (PET-MRI) for response assessment after radiation therapy of cervical carcinoma: a pilot study

Authors: J. E. Mongula, F. C. H. Bakers, S. Vöö, L. Lutgens, T. van Gorp, R. F. P. M. Kruitwagen, B. F. M. Slangen

Published in: EJNMMI Research | Issue 1/2018

Login to get access

Abstract

Background

Advanced stage cervical cancer is primarily treated by radiotherapy. Local tumor control is a prerequisite for cure. Imaging after treatment is controversial. Positron emission tomography (PET) combined with computer tomography (PET-CT) shows great promise for detecting metastases. On the other hand, magnetic resonance imaging (MRI) is superior in depicting anatomical details. The combination of PET-MRI could result in more accurate evaluation of cervical cancer treatment outcome. The aim of this pilot study is to share our initial experience with PET-MRI in the evaluation of treatment response in cervical cancer after radiation treatment.

Methods

Ten patients with cervical carcinoma (FIGO ≥IB2) were prospectively evaluated. Eleven weeks (median; range 8–15 weeks) after radiation therapy, treatment response was evaluated by PET-MRI. The PET, MRI, and combined PET-MRI images were evaluated for the presence of local residual tumor and metastasis. Diagnostic performance was assessed by area under the receiver operator characteristic (ROC) curve for evaluation of local residual tumor. The readers were blinded for outcome data. Local residual disease, metastasis, diagnostic confidence, and change of opinion were scored on a 5-point Likert scale. The reference standard consisted of pathology and/or follow-up according to the clinical guidelines.

Results

Three out of ten patients had local residual abnormalities suggestive for tumor residue after radiation treatment. The availability of both PET and MRI resulted in an increase in diagnostic confidence in 80–90% of all patients. Change of opinion was observed in 70% and change of policy in 50%, especially in the group with residual tumor. The diagnostic accuracy increased significantly for the radiologist if PET-MRI was combined (AUC .54 versus .83).

Conclusions

PET-MRI shows promise for evaluation of treatment response after radiation for cervical cancer, especially increasing diagnostic confidence, while potentially increasing diagnostic performance.

Literature
  1. Sardain H, Lavoue V, Redpath M, Bertheuil N, Foucher F, Leveque J. Curative pelvic exenteration for recurrent cervical carcinoma in the era of concurrent chemotherapy and radiation therapy. A systematic review. Eur J Surg Oncol. 2015;41(8):975–85.View ArticlePubMed
  2. Kim TH, Kim MH, Kim BJ, Park SI, Ryu SY, Cho CK. Prognostic importance of the site of recurrence in patients with metastatic recurrent cervical cancer. Int J Radiat Oncol Biol Phys. 2017;98(5):1124–31.View ArticlePubMed
  3. Koh WJ, Greer BE, Abu-Rustum NR, Apte SM, Campos SM, Chan J, et al. Cervical cancer. J Natl Compr Cancer Netw. 2013;11(3):320–43.View Article
  4. Kim JY, Byun SJ, Kim YS, Nam JH. Disease courses in patients with residual tumor following concurrent chemoradiotherapy for locally advanced cervical cancer. Gynecol Oncol. 2017;144(1):34–9.View ArticlePubMed
  5. Schwarz JK, Siegel BA, Dehdashti F, Grigsby PW. Association of posttherapy positron emission tomography with tumor response and survival in cervical carcinoma. JAMA. 2007;298(19):2289–95.View ArticlePubMed
  6. Choi J, Kim HJ, Jeong YH, Lee JH, Cho A, Yun M, et al. The role of (18) F-FDG PET/CT in assessing therapy response in cervix cancer after concurrent chemoradiation therapy. Nucl Med Mol Imaging. 2014;48(2):130–6.View ArticlePubMed
  7. Siva S, Deb S, Young RJ, Hicks RJ, Callahan J, Bressel M, et al. (1)(8)F-FDG PET/CT following chemoradiation of uterine cervix cancer provides powerful prognostic stratification independent of HPV status: a prospective cohort of 105 women with mature survival data. Eur J Nucl Med Mol Imaging. 2015;42(12):1825–32.View ArticlePubMed
  8. Lee SI, Catalano OA, Dehdashti F. Evaluation of gynecologic cancer with MR imaging, 18F-FDG PET/CT, and PET/MR imaging. J Nucl Med. 2015;56(3):436–43.View ArticlePubMed
  9. Mongula J, Slangen B, Lambregts D, Bakers F, Mahesh S, Lutgens L, et al. Predictive criteria for MRI-based evaluation of response both during and after radiotherapy for cervical cancer. J Contemp Brachytherapy. 2016;8(3):181–8.View ArticlePubMedPubMed Central
  10. Vincens E, Balleyguier C, Rey A, Uzan C, Zareski E, Gouy S, et al. Accuracy of magnetic resonance imaging in predicting residual disease in patients treated for stage IB2/II cervical carcinoma with chemoradiation therapy: correlation of radiologic findings with surgicopathologic results. Cancer. 2008;113(8):2158–65.View ArticlePubMed
  11. Grueneisen J, Beiderwellen K, Heusch P, Gratz M, Schulze-Hagen A, Heubner M, et al. Simultaneous positron emission tomography/magnetic resonance imaging for whole-body staging in patients with recurrent gynecological malignancies of the pelvis: a comparison to whole-body magnetic resonance imaging alone. Investig Radiol. 2014;49(12):808–15.View Article
  12. Beiderwellen K, Grueneisen J, Ruhlmann V, Buderath P, Aktas B, Heusch P, et al. [(18)F]FDG PET/MRI vs. PET/CT for whole-body staging in patients with recurrent malignancies of the female pelvis: initial results. Eur J Nucl Med Mol Imaging. 2015;42(1):56–65.View ArticlePubMed
  13. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.View ArticlePubMed
  14. Levy A, Caramella C, Chargari C, Medjhoul A, Rey A, Zareski E, et al. Accuracy of diffusion-weighted echo-planar MR imaging and ADC mapping in the evaluation of residual cervical carcinoma after radiation therapy. Gynecol Oncol. 2011;123(1):110–5.View ArticlePubMed
  15. Grueneisen J, Beiderwellen K, Heusch P, Buderath P, Aktas B, Gratz M, et al. Correlation of standardized uptake value and apparent diffusion coefficient in integrated whole-body PET/MRI of primary and recurrent cervical cancer. PLoS One. 2014;9(5):e96751.View ArticlePubMedPubMed Central
  16. Brandmaier P, Purz S, Bremicker K, Hockel M, Barthel H, Kluge R, et al. Simultaneous [18F]FDG-PET/MRI: correlation of apparent diffusion coefficient (ADC) and standardized uptake value (SUV) in primary and recurrent cervical cancer. PLoS One. 2015;10(11):e0141684.View ArticlePubMedPubMed Central
  17. Ippolito D, Fior D, Trattenero C, Ponti ED, Drago S, Guerra L, et al. Combined value of apparent diffusion coefficient-standardized uptake value max in evaluation of post-treated locally advanced rectal cancer. World J Radiol. 2015;7(12):509–20.View ArticlePubMedPubMed Central
Metadata
Title
Positron emission tomography-magnetic resonance imaging (PET-MRI) for response assessment after radiation therapy of cervical carcinoma: a pilot study
Authors
J. E. Mongula
F. C. H. Bakers
S. Vöö
L. Lutgens
T. van Gorp
R. F. P. M. Kruitwagen
B. F. M. Slangen
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2018
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-017-0352-6

Other articles of this Issue 1/2018

EJNMMI Research 1/2018 Go to the issue