Skip to main content
Top
Published in: EJNMMI Research 1/2017

Open Access 01-12-2017 | Original research

18F-FDG-labeled red blood cell PET for blood-pool imaging: preclinical evaluation in rats

Authors: Yohji Matsusaka, Tadaki Nakahara, Kazuhiro Takahashi, Yu Iwabuchi, Chiyoko Nishime, Mayumi Kajimura, Masahiro Jinzaki

Published in: EJNMMI Research | Issue 1/2017

Login to get access

Abstract

Background

Red blood cells (RBCs) labeled with single-photon emitters have been clinically used for blood-pool imaging. Although some PET tracers have been introduced for blood-pool imaging, they have not yet been widely used. The present study investigated the feasibility of labeling RBCs with 18F-2-deoxy-2-fluoro-D-glucose (18F-FDG) for blood-pool imaging with PET.
RBCs isolated from venous blood of rats were washed with glucose-free phosphate-buffered saline and labeled with 18F-FDG. To optimize labeling efficiency, the effects of glucose deprivation time and incubation (labeling) time with 18F-FDG were investigated. Post-labeling stability was assessed by calculating the release fraction of radioactivity and identifying the chemical forms of 18F in the released and intracellular components of 18F-FDG-labeled RBCs incubated in plasma. Just after intravenous injection of the optimized autologous 18F-FDG-labeled RBCs, dynamic PET scans were performed to evaluate in vivo imaging in normal rats and intraabdominal bleeding models (temporary and persistent bleeding).

Results

The optimal durations of glucose deprivation and incubation (labeling) with 18F-FDG were 60 and 30 min, respectively. As low as 10% of 18F was released as the form of 18F-FDG from 18F-FDG-labeled RBCs after a 60-min incubation. Dynamic PET images of normal rats showed strong persistence in the cardiovascular system for at least 120 min. In the intraabdominal bleeding models, 18F-FDG-labeled RBC PET visualized the extravascular blood clearly and revealed the dynamic changes of the extravascular radioactivity in the temporary and persistent bleeding.

Conclusions

RBCs can be effectively labeled with 18F-FDG and used for blood-pool imaging with PET in rats.
Appendix
Available only for authorised users
Literature
2.
go back to reference Winzelberg GG, McKusick KA, Strauss HW, Waltman AC, Greenfield AJ. Evaluation of gastrointestinal bleeding by red blood cells labeled in vivo with technetium-99 m. J Nucl Med. 1979;20:1080–6.PubMed Winzelberg GG, McKusick KA, Strauss HW, Waltman AC, Greenfield AJ. Evaluation of gastrointestinal bleeding by red blood cells labeled in vivo with technetium-99 m. J Nucl Med. 1979;20:1080–6.PubMed
3.
go back to reference Xie BQ, Tian YQ, Zhang J, Zhao SH, Yang MF, Guo F, et al. Evaluation of left and right ventricular ejection fraction and volumes from gated blood-pool SPECT in patients with dilated cardiomyopathy: comparison with cardiac MRI. J Nucl Med. 2012;53:584–91. doi:10.2967/jnumed.111.096057.CrossRefPubMed Xie BQ, Tian YQ, Zhang J, Zhao SH, Yang MF, Guo F, et al. Evaluation of left and right ventricular ejection fraction and volumes from gated blood-pool SPECT in patients with dilated cardiomyopathy: comparison with cardiac MRI. J Nucl Med. 2012;53:584–91. doi:10.​2967/​jnumed.​111.​096057.CrossRefPubMed
4.
go back to reference Verani MS, Gaeta J, LeBlanc AD, Poliner LR, Phillips L, Lacy JL, et al. Validation of left ventricular volume measurements by radionuclide angiography. J Nucl Med. 1985;26:1394–401.PubMed Verani MS, Gaeta J, LeBlanc AD, Poliner LR, Phillips L, Lacy JL, et al. Validation of left ventricular volume measurements by radionuclide angiography. J Nucl Med. 1985;26:1394–401.PubMed
6.
go back to reference Murata Y, Yamada I, Umehara I, Ishii Y, Okada N. Perfusion and blood-pool scintigraphy in the evaluation of head and neck hemangiomas. J Nucl Med. 1997;38:882–5.PubMed Murata Y, Yamada I, Umehara I, Ishii Y, Okada N. Perfusion and blood-pool scintigraphy in the evaluation of head and neck hemangiomas. J Nucl Med. 1997;38:882–5.PubMed
7.
go back to reference Kuhl DE, Reivich M, Alavi A, Nyary I, Staum MM. Local cerebral blood volume determined by three-dimensional reconstruction of radionuclide scan data. Circ Res. 1975;36:610–9.CrossRefPubMed Kuhl DE, Reivich M, Alavi A, Nyary I, Staum MM. Local cerebral blood volume determined by three-dimensional reconstruction of radionuclide scan data. Circ Res. 1975;36:610–9.CrossRefPubMed
9.
go back to reference Fischer J, Wolf R, Leon A. Technetium-99 m as a label for erythrocytes. J Nucl Med. 1967;8:229–32.PubMed Fischer J, Wolf R, Leon A. Technetium-99 m as a label for erythrocytes. J Nucl Med. 1967;8:229–32.PubMed
10.
11.
go back to reference Phelps ME, Huang SC, Hoffman EJ, Kuhl DE. Validation of tomographic measurement of cerebral blood volume with C-11-labeled carboxyhemoglobin. J Nucl Med. 1979;20:328–34.PubMed Phelps ME, Huang SC, Hoffman EJ, Kuhl DE. Validation of tomographic measurement of cerebral blood volume with C-11-labeled carboxyhemoglobin. J Nucl Med. 1979;20:328–34.PubMed
12.
go back to reference Subramanyam R, Alpert NM, Hoop Jr B, Brownell GL, Taveras JM. A model for regional cerebral oxygen distribution during continuous inhalation of 15O2, C15O, and C15O2. J Nucl Med. 1978;19:48–53.PubMed Subramanyam R, Alpert NM, Hoop Jr B, Brownell GL, Taveras JM. A model for regional cerebral oxygen distribution during continuous inhalation of 15O2, C15O, and C15O2. J Nucl Med. 1978;19:48–53.PubMed
13.
go back to reference Herance JR, Gispert JD, Abad S, Victor VM, Pareto D, Torrent E, et al. Erythrocytes labeled with [(18) F]SFB as an alternative to radioactive CO for quantification of blood volume with PET. Contrast Media Mol Imaging. 2013;8:375–81. doi:10.1002/cmmi.1533.CrossRefPubMed Herance JR, Gispert JD, Abad S, Victor VM, Pareto D, Torrent E, et al. Erythrocytes labeled with [(18) F]SFB as an alternative to radioactive CO for quantification of blood volume with PET. Contrast Media Mol Imaging. 2013;8:375–81. doi:10.​1002/​cmmi.​1533.CrossRefPubMed
15.
go back to reference Osman S, Danpure HJ. The use of 2-[18 F]fluoro-2-deoxy-D-glucose as a potential in vitro agent for labelling human granulocytes for clinical studies by positron emission tomography. Int J Rad Appl Instrum B. 1992;19:183–90.CrossRefPubMed Osman S, Danpure HJ. The use of 2-[18 F]fluoro-2-deoxy-D-glucose as a potential in vitro agent for labelling human granulocytes for clinical studies by positron emission tomography. Int J Rad Appl Instrum B. 1992;19:183–90.CrossRefPubMed
16.
go back to reference Forstrom LA, Mullan BP, Hung JC, Lowe VJ, Thorson LM. 18 F-FDG labeling of human leukocytes. Nucl Med Commun. 2000;21:691–4.PubMed Forstrom LA, Mullan BP, Hung JC, Lowe VJ, Thorson LM. 18 F-FDG labeling of human leukocytes. Nucl Med Commun. 2000;21:691–4.PubMed
17.
go back to reference Dumarey N, Egrise D, Blocklet D, Stallenberg B, Remmelink M, del Marmol V, et al. Imaging infection with 18 F-FDG-labeled leukocyte PET/CT: initial experience in 21 patients. J Nucl Med. 2006;47:625–32.PubMed Dumarey N, Egrise D, Blocklet D, Stallenberg B, Remmelink M, del Marmol V, et al. Imaging infection with 18 F-FDG-labeled leukocyte PET/CT: initial experience in 21 patients. J Nucl Med. 2006;47:625–32.PubMed
18.
go back to reference Bhattacharya A, Kochhar R, Sharma S, Ray P, Kalra N, Khandelwal N, et al. PET/CT with 18 F-FDG-labeled autologous leukocytes for the diagnosis of infected fluid collections in acute pancreatitis. J Nucl Med. 2014;55:1267–72. doi:10.2967/jnumed.114.137232.CrossRefPubMed Bhattacharya A, Kochhar R, Sharma S, Ray P, Kalra N, Khandelwal N, et al. PET/CT with 18 F-FDG-labeled autologous leukocytes for the diagnosis of infected fluid collections in acute pancreatitis. J Nucl Med. 2014;55:1267–72. doi:10.​2967/​jnumed.​114.​137232.CrossRefPubMed
19.
go back to reference Nahmias C, Wahl LM, Amano S, Asselin MC, Chirakal R. Equilibration of 6-[18 F]fluoro-L-m-tyrosine between plasma and erythrocytes. J Nucl Med. 2000;41:1636–41.PubMed Nahmias C, Wahl LM, Amano S, Asselin MC, Chirakal R. Equilibration of 6-[18 F]fluoro-L-m-tyrosine between plasma and erythrocytes. J Nucl Med. 2000;41:1636–41.PubMed
20.
go back to reference Hays MT, Segall GM. A mathematical model for the distribution of fluorodeoxyglucose in humans. J Nucl Med. 1999;40:1358–66.PubMed Hays MT, Segall GM. A mathematical model for the distribution of fluorodeoxyglucose in humans. J Nucl Med. 1999;40:1358–66.PubMed
22.
go back to reference Vogel J, Kiessling I, Heinicke K, Stallmach T, Ossent P, Vogel O, et al. Transgenic mice overexpressing erythropoietin adapt to excessive erythrocytosis by regulating blood viscosity. Blood. 2003;102:2278–84. doi:10.1182/blood-2003-01-0283.CrossRefPubMed Vogel J, Kiessling I, Heinicke K, Stallmach T, Ossent P, Vogel O, et al. Transgenic mice overexpressing erythropoietin adapt to excessive erythrocytosis by regulating blood viscosity. Blood. 2003;102:2278–84. doi:10.​1182/​blood-2003-01-0283.CrossRefPubMed
23.
go back to reference Hamacher K, Coenen HH, Stocklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18 F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986;27:235–8.PubMed Hamacher K, Coenen HH, Stocklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18 F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986;27:235–8.PubMed
24.
go back to reference Mizuta T, Kitamura K, Iwata H, Yamagishi Y, Ohtani A, Tanaka K, et al. Performance evaluation of a high-sensitivity large-aperture small-animal PET scanner: ClairvivoPET. Ann Nucl Med. 2008;22:447–55.CrossRefPubMed Mizuta T, Kitamura K, Iwata H, Yamagishi Y, Ohtani A, Tanaka K, et al. Performance evaluation of a high-sensitivity large-aperture small-animal PET scanner: ClairvivoPET. Ann Nucl Med. 2008;22:447–55.CrossRefPubMed
26.
go back to reference Rose IA, O’Connell EL. The role of glucose 6-phosphate in the regulation of glucose metabolism in human erythrocytes. J Biol Chem. 1964;239:12–7.PubMed Rose IA, O’Connell EL. The role of glucose 6-phosphate in the regulation of glucose metabolism in human erythrocytes. J Biol Chem. 1964;239:12–7.PubMed
27.
28.
go back to reference Hannon JP, Bossone CA, Rodkey WG. Splenic red cell sequestration and blood volume measurements in conscious pigs. Am J Physiol. 1985;248:R293–301.PubMed Hannon JP, Bossone CA, Rodkey WG. Splenic red cell sequestration and blood volume measurements in conscious pigs. Am J Physiol. 1985;248:R293–301.PubMed
29.
go back to reference Marini RP, Callahan RJ, Jackson LR, Jyawook S, Esteves MI, Fox JG, et al. Distribution of technetium 99 m-labeled red blood cells during isoflurane anesthesia in ferrets. Am J Vet Res. 1997;58:781–5.PubMed Marini RP, Callahan RJ, Jackson LR, Jyawook S, Esteves MI, Fox JG, et al. Distribution of technetium 99 m-labeled red blood cells during isoflurane anesthesia in ferrets. Am J Vet Res. 1997;58:781–5.PubMed
30.
go back to reference Pavel DG, Zimmer M, Patterson VN. In vivo labeling of red blood cells with 99mTc: a new approach to blood pool visualization. J Nucl Med. 1977;18:305–8.PubMed Pavel DG, Zimmer M, Patterson VN. In vivo labeling of red blood cells with 99mTc: a new approach to blood pool visualization. J Nucl Med. 1977;18:305–8.PubMed
Metadata
Title
18F-FDG-labeled red blood cell PET for blood-pool imaging: preclinical evaluation in rats
Authors
Yohji Matsusaka
Tadaki Nakahara
Kazuhiro Takahashi
Yu Iwabuchi
Chiyoko Nishime
Mayumi Kajimura
Masahiro Jinzaki
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2017
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-017-0266-3

Other articles of this Issue 1/2017

EJNMMI Research 1/2017 Go to the issue