Skip to main content
Top
Published in: EJNMMI Research 1/2016

Open Access 01-12-2016 | Original research

Effects of common anesthetic agents on [18F]flumazenil binding to the GABAA receptor

Authors: Mikael Palner, Corinne Beinat, Sam Banister, Francesca Zanderigo, Jun Hyung Park, Bin Shen, Trine Hjoernevik, Jae Ho Jung, Byung Chul Lee, Sang Eun Kim, Lawrence Fung, Frederick T. Chin

Published in: EJNMMI Research | Issue 1/2016

Login to get access

Abstract

Background

The availability of GABAA receptor binding sites in the brain can be assessed by positron emission tomography (PET) using the radioligand, [18F]flumazenil. However, the brain uptake and binding of this PET radioligand are influenced by anesthetic drugs, which are typically needed in preclinical imaging studies and clinical imaging studies involving patient populations that do not tolerate relatively longer scan times. The objective of this study was to examine the effects of anesthesia on the binding of [18F]flumazenil to GABAA receptors in mice.

Methods

Brain and whole blood radioactivity concentrations were measured ex vivo by scintillation counting or in vivo by PET in four groups of mice following administration of [18F]flumazenil: awake mice and mice anesthetized with isoflurane, dexmedetomidine, or ketamine/dexmedetomidine. Dynamic PET recordings were obtained for 60 min in mice anesthetized by either isoflurane or ketamine/dexmedetomidine. Static PET recordings were obtained at 25 or 55 min after [18F]flumazenil injection in awake or dexmedetomidine-treated mice acutely anesthetized with isoflurane. The apparent distribution volume (VT*) was calculated for the hippocampus and frontal cortex from either the full dynamic PET scans using an image-derived input function or from a series of ex vivo experiments using whole blood as the input function.

Results

PET images showed persistence of high [18F]flumazenil uptake (up to 20 % ID/g) in the brains of mice scanned under isoflurane or ketamine/dexmedetomidine anesthesia, whereas uptake was almost indiscernible in late samples or static scans from awake or dexmedetomidine-treated animals. The steady-state VT* was twofold higher in hippocampus of isoflurane-treated mice and dexmedetomidine-treated mice than in awake mice.

Conclusions

Anesthesia has pronounced effects on the binding and blood-brain distribution of [18F]flumazenil. Consequently, considerable caution must be exercised in the interpretation of preclinical and clinical PET studies of GABAA receptors involving the use of anesthesia.
Literature
3.
go back to reference Miller PS, Smart TG. Binding, activation and modulation of Cys-loop receptors. Trends Pharmacol Sci. 2010;31(4):161–74. Elsevier Ltd.CrossRefPubMed Miller PS, Smart TG. Binding, activation and modulation of Cys-loop receptors. Trends Pharmacol Sci. 2010;31(4):161–74. Elsevier Ltd.CrossRefPubMed
4.
go back to reference Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, et al. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev. 1998;50(2):291–313.PubMed Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, et al. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev. 1998;50(2):291–313.PubMed
5.
go back to reference Sigel E. The benzodiazepine binding site of GABAA receptors. Trends Pharmacol Sci. 1997;18(11):425–9.CrossRefPubMed Sigel E. The benzodiazepine binding site of GABAA receptors. Trends Pharmacol Sci. 1997;18(11):425–9.CrossRefPubMed
6.
go back to reference Andersson JD, Halldin C. PET radioligands targeting the brain GABA A /benzodiazepine receptor complex. J Label Compd Radiopharm. 2013;56(3–4):196–206.CrossRef Andersson JD, Halldin C. PET radioligands targeting the brain GABA A /benzodiazepine receptor complex. J Label Compd Radiopharm. 2013;56(3–4):196–206.CrossRef
7.
go back to reference Salmi E, Aalto S, Hirvonen J, Långsjö JW, Maksimow AT, Oikonen V, et al. Measurement of GABAA receptor binding in vivo with [11C]Flumazenil: a test–retest study in healthy subjects. Neuroimage. 2008;41(2):260–9.CrossRefPubMed Salmi E, Aalto S, Hirvonen J, Långsjö JW, Maksimow AT, Oikonen V, et al. Measurement of GABAA receptor binding in vivo with [11C]Flumazenil: a test–retest study in healthy subjects. Neuroimage. 2008;41(2):260–9.CrossRefPubMed
8.
go back to reference Odano I, Halldin C, Karlsson P, Varrone A, Airaksinen AJ, Krasikova RN, et al. [18F]Flumazenil binding to central benzodiazepine receptor studies by PET. Neuroimage. 2009;45(3):891–902. Elsevier Inc.CrossRefPubMed Odano I, Halldin C, Karlsson P, Varrone A, Airaksinen AJ, Krasikova RN, et al. [18F]Flumazenil binding to central benzodiazepine receptor studies by PET. Neuroimage. 2009;45(3):891–902. Elsevier Inc.CrossRefPubMed
9.
go back to reference Ryzhikov NN, Seneca N, Krasikova RN, Gomzina NA, Shchukin E, Fedorova OS, et al. Preparation of highly specific radioactivity [18F]flumazenil and its evaluation in cynomolgus monkey by positron emission tomography. Nucl Med Biol. 2005;32(2):109–16.CrossRefPubMed Ryzhikov NN, Seneca N, Krasikova RN, Gomzina NA, Shchukin E, Fedorova OS, et al. Preparation of highly specific radioactivity [18F]flumazenil and its evaluation in cynomolgus monkey by positron emission tomography. Nucl Med Biol. 2005;32(2):109–16.CrossRefPubMed
10.
go back to reference Sandiego CM, Jin X, Mulnix T, Fowles K, Labaree D, Ropchan J, et al. Awake nonhuman primate brain PET imaging with minimal head restraint: evaluation of GABAA-benzodiazepine binding with 11C-flumazenil in awake and anesthetized animals. J Nucl Med. 2013;54(11):1962–8.CrossRefPubMed Sandiego CM, Jin X, Mulnix T, Fowles K, Labaree D, Ropchan J, et al. Awake nonhuman primate brain PET imaging with minimal head restraint: evaluation of GABAA-benzodiazepine binding with 11C-flumazenil in awake and anesthetized animals. J Nucl Med. 2013;54(11):1962–8.CrossRefPubMed
11.
go back to reference Syvanen S, Labots M, Tagawa Y, Eriksson J, Windhorst AD, Lammertsma AA, et al. Altered GABAA receptor density and unaltered blood-brain barrier transport in a kainate model of epilepsy: an in vivo study using 11C-Flumazenil and PET. J Nucl Med. 2012;53(12):1974–83.CrossRefPubMed Syvanen S, Labots M, Tagawa Y, Eriksson J, Windhorst AD, Lammertsma AA, et al. Altered GABAA receptor density and unaltered blood-brain barrier transport in a kainate model of epilepsy: an in vivo study using 11C-Flumazenil and PET. J Nucl Med. 2012;53(12):1974–83.CrossRefPubMed
12.
go back to reference Bouillot C, Bonnefoi F, Liger F, Zimmer L. A microPET comparison of the effects of etifoxine and diazepam on [11C]flumazenil uptake in rat brains. Neurosci Lett. 2016;612:74–9. Elsevier Ireland Ltd.CrossRefPubMed Bouillot C, Bonnefoi F, Liger F, Zimmer L. A microPET comparison of the effects of etifoxine and diazepam on [11C]flumazenil uptake in rat brains. Neurosci Lett. 2016;612:74–9. Elsevier Ireland Ltd.CrossRefPubMed
13.
14.
go back to reference Truitt WA, Johnson PL, Dietrich AD, Fitz SD, Shekhar A. Anxiety-like behavior is modulated by a discrete subpopulation of interneurons in the basolateral amygdala. Neuroscience. 2009;160(2):284–94.CrossRefPubMedPubMedCentral Truitt WA, Johnson PL, Dietrich AD, Fitz SD, Shekhar A. Anxiety-like behavior is modulated by a discrete subpopulation of interneurons in the basolateral amygdala. Neuroscience. 2009;160(2):284–94.CrossRefPubMedPubMedCentral
15.
go back to reference Almeida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, et al. Reduced GABAergic inhibition in the basolateral amygdala and the development of anxiety-like behaviors after mild traumatic brain injury. Rudolph U, editor. PLoS One. 2014 Jul 21;9(7):e102627 Almeida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, et al. Reduced GABAergic inhibition in the basolateral amygdala and the development of anxiety-like behaviors after mild traumatic brain injury. Rudolph U, editor. PLoS One. 2014 Jul 21;9(7):e102627
16.
go back to reference Paine TA, Slipp LE, Carlezon WA. Schizophrenia-like attentional deficits following blockade of prefrontal cortex GABAA receptors. Neuropsychopharmacology. 2011;36(8):1703–13. Nature Publishing Group.CrossRefPubMedPubMedCentral Paine TA, Slipp LE, Carlezon WA. Schizophrenia-like attentional deficits following blockade of prefrontal cortex GABAA receptors. Neuropsychopharmacology. 2011;36(8):1703–13. Nature Publishing Group.CrossRefPubMedPubMedCentral
17.
go back to reference Frankle WG, Cho RY, Prasad KM, Mason NS, Paris J, Himes ML, et al. In vivo measurement of GABA transmission in healthy subjects and schizophrenia patients. Am J Psychiatry. 2015;172(11):1148–59.CrossRefPubMedPubMedCentral Frankle WG, Cho RY, Prasad KM, Mason NS, Paris J, Himes ML, et al. In vivo measurement of GABA transmission in healthy subjects and schizophrenia patients. Am J Psychiatry. 2015;172(11):1148–59.CrossRefPubMedPubMedCentral
18.
go back to reference D’Hulst C, De Geest N, Reeve SP, Van Dam D, De Deyn PP, Hassan BA, et al. Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res. 2006;1121(1):238–45.CrossRefPubMed D’Hulst C, De Geest N, Reeve SP, Van Dam D, De Deyn PP, Hassan BA, et al. Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res. 2006;1121(1):238–45.CrossRefPubMed
19.
go back to reference D’Hulst C, Heulens I, Van der Aa N, Goffin K, Koole M, Porke K, et al. positron emission tomography (PET) quantification of GABAA receptors in the brain of fragile X patients. Bardoni B, editor. PLoS One. 2015 Jul 29;10(7):e0131486 D’Hulst C, Heulens I, Van der Aa N, Goffin K, Koole M, Porke K, et al. positron emission tomography (PET) quantification of GABAA receptors in the brain of fragile X patients. Bardoni B, editor. PLoS One. 2015 Jul 29;10(7):e0131486
20.
go back to reference Hildebrandt IJ, Su H, Weber WA. Anesthesia and other considerations for in vivo imaging of small animals. ILAR J. 2008;49(1):17–26.CrossRefPubMed Hildebrandt IJ, Su H, Weber WA. Anesthesia and other considerations for in vivo imaging of small animals. ILAR J. 2008;49(1):17–26.CrossRefPubMed
21.
go back to reference Elfving B, Bjørnholm B, Knudsen GM. Interference of anaesthetics with radioligand binding in neuroreceptor studies. Eur J Nucl Med Mol Imaging. 2003;30(6):912–5.CrossRefPubMed Elfving B, Bjørnholm B, Knudsen GM. Interference of anaesthetics with radioligand binding in neuroreceptor studies. Eur J Nucl Med Mol Imaging. 2003;30(6):912–5.CrossRefPubMed
22.
go back to reference Hassoun W, Le Cavorsin M, Ginovart N, Zimmer L, Gualda V, Bonnefoi F, et al. Pet study of the [11C]raclopride binding in the striatum of the awake cat: effects of anaesthetics and role of cerebral blood flow. Eur J Nucl Med Mol Imaging. 2003;30(1):141–8.CrossRefPubMed Hassoun W, Le Cavorsin M, Ginovart N, Zimmer L, Gualda V, Bonnefoi F, et al. Pet study of the [11C]raclopride binding in the striatum of the awake cat: effects of anaesthetics and role of cerebral blood flow. Eur J Nucl Med Mol Imaging. 2003;30(1):141–8.CrossRefPubMed
23.
go back to reference Momosaki S, Hatano K, Kawasumi Y, Kato T, Hosoi R, Kobayashi K, et al. Rat-PET study without anesthesia: anesthetics modify the dopamine D1 receptor binding in rat brain. Synapse. 2004;54(4):207–13.CrossRefPubMed Momosaki S, Hatano K, Kawasumi Y, Kato T, Hosoi R, Kobayashi K, et al. Rat-PET study without anesthesia: anesthetics modify the dopamine D1 receptor binding in rat brain. Synapse. 2004;54(4):207–13.CrossRefPubMed
24.
go back to reference Ohba H, Harada N, Nishiyama S, Kakiuchi T, Tsukada H. Ketamine/xylazine anesthesia alters [11C]MNPA binding to dopamine D2 receptors and response to methamphetamine challenge in monkey brain. Synapse. 2009;63(6):534–7.CrossRefPubMed Ohba H, Harada N, Nishiyama S, Kakiuchi T, Tsukada H. Ketamine/xylazine anesthesia alters [11C]MNPA binding to dopamine D2 receptors and response to methamphetamine challenge in monkey brain. Synapse. 2009;63(6):534–7.CrossRefPubMed
25.
go back to reference Tsukada H, Nishiyama S, Kakiuchi T, Ohba H, Sato K, Harada N. Ketamine alters the availability of striatal dopamine transporter as measured by [11C]?-CFT and [11C]?-CIT-FE in the monkey brain. Synapse. 2001;42(4):273–80.CrossRefPubMed Tsukada H, Nishiyama S, Kakiuchi T, Ohba H, Sato K, Harada N. Ketamine alters the availability of striatal dopamine transporter as measured by [11C]?-CFT and [11C]?-CIT-FE in the monkey brain. Synapse. 2001;42(4):273–80.CrossRefPubMed
26.
go back to reference Tsukada H, Harada N, Nishiyama S, Ohba H, Sato K, Fukumoto D, et al. Ketamine decreased striatal [(11)C]raclopride binding with no alterations in static dopamine concentrations in the striatal extracellular fluid in the monkey brain: multiparametric PET studies combined with microdialysis analysis. Synapse. 2000;37(2):95–103.CrossRefPubMed Tsukada H, Harada N, Nishiyama S, Ohba H, Sato K, Fukumoto D, et al. Ketamine decreased striatal [(11)C]raclopride binding with no alterations in static dopamine concentrations in the striatal extracellular fluid in the monkey brain: multiparametric PET studies combined with microdialysis analysis. Synapse. 2000;37(2):95–103.CrossRefPubMed
27.
go back to reference Tsukada H, Nishiyama S, Kakiuchi T, Ohba H, Sato K, Harada N, et al. Isoflurane anesthesia enhances the inhibitory effects of cocaine and GBR12909 on dopamine transporter: PET studies in combination with microdialysis in the monkey brain. Brain Res. 1999;849(1–2):85–96.CrossRefPubMed Tsukada H, Nishiyama S, Kakiuchi T, Ohba H, Sato K, Harada N, et al. Isoflurane anesthesia enhances the inhibitory effects of cocaine and GBR12909 on dopamine transporter: PET studies in combination with microdialysis in the monkey brain. Brain Res. 1999;849(1–2):85–96.CrossRefPubMed
29.
go back to reference Gyulai FE, Mintun MA, Firestone LL. Dose-dependent enhancement of in vivo GABA(A)-benzodiazepine receptor binding by isoflurane. Anesthesiology. 2001;95(3):585–93.CrossRefPubMed Gyulai FE, Mintun MA, Firestone LL. Dose-dependent enhancement of in vivo GABA(A)-benzodiazepine receptor binding by isoflurane. Anesthesiology. 2001;95(3):585–93.CrossRefPubMed
30.
go back to reference Salmi E, Kaisti KK, Metsähonkala L, Oikonen V, Aalto S, Någren K, et al. Sevoflurane and propofol increase 11C-flumazenil binding to gamma-aminobutyric acidA receptors in humans. Anesth Analg. 2004;99(5):1420–6. Salmi E, Kaisti KK, Metsähonkala L, Oikonen V, Aalto S, Någren K, et al. Sevoflurane and propofol increase 11C-flumazenil binding to gamma-aminobutyric acidA receptors in humans. Anesth Analg. 2004;99(5):1420–6.
31.
go back to reference Frankle WG, Cho RY, Mason NS, Chen C, Himes M, Walker C, et al. [11C]flumazenil binding is increased in a dose-dependent manner with tiagabine-induced elevations in GABA levels. Hashimoto K, editor. PLoS One. 2012 Feb 27;7(2):e32443 Frankle WG, Cho RY, Mason NS, Chen C, Himes M, Walker C, et al. [11C]flumazenil binding is increased in a dose-dependent manner with tiagabine-induced elevations in GABA levels. Hashimoto K, editor. PLoS One. 2012 Feb 27;7(2):e32443
32.
go back to reference Salmi E, Långsjö JW, Aalto S, Någren K, Metsähonkala L, Kaisti KK, et al. Subanesthetic ketamine does not affect 11C-flumazenil binding in humans. Anesth Analg. 2005;101(3):722–5.CrossRefPubMed Salmi E, Långsjö JW, Aalto S, Någren K, Metsähonkala L, Kaisti KK, et al. Subanesthetic ketamine does not affect 11C-flumazenil binding in humans. Anesth Analg. 2005;101(3):722–5.CrossRefPubMed
33.
go back to reference Stone JM, Dietrich C, Edden R, Mehta MA, De Simoni S, Reed LJ, et al. Ketamine effects on brain GABA and glutamate levels with 1H-MRS: relationship to ketamine-induced psychopathology. Mol Psychiatry. 2012;17(7):664–5.CrossRefPubMed Stone JM, Dietrich C, Edden R, Mehta MA, De Simoni S, Reed LJ, et al. Ketamine effects on brain GABA and glutamate levels with 1H-MRS: relationship to ketamine-induced psychopathology. Mol Psychiatry. 2012;17(7):664–5.CrossRefPubMed
34.
go back to reference Rodriguez CI, Kegeles LS, Levinson A, Ogden RT, Mao X, Milak MS, et al. In vivo effects of ketamine on glutamate-glutamine and gamma-aminobutyric acid in obsessive-compulsive disorder: proof of concept. Psychiatry Res Neuroimaging. 2015;233(2):141–7. Elsevier.CrossRefPubMed Rodriguez CI, Kegeles LS, Levinson A, Ogden RT, Mao X, Milak MS, et al. In vivo effects of ketamine on glutamate-glutamine and gamma-aminobutyric acid in obsessive-compulsive disorder: proof of concept. Psychiatry Res Neuroimaging. 2015;233(2):141–7. Elsevier.CrossRefPubMed
35.
go back to reference Milak MS, Proper CJ, Mulhern ST, Parter AL, Kegeles LS, Ogden RT, et al. A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder. Mol Psychiatry. 2016;21(3):320–7.CrossRefPubMed Milak MS, Proper CJ, Mulhern ST, Parter AL, Kegeles LS, Ogden RT, et al. A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder. Mol Psychiatry. 2016;21(3):320–7.CrossRefPubMed
36.
go back to reference Fang HW, Yang L, Wang XR, Zhu H. Clinical efficacy of dexmedetomidine versus propofol in children undergoing magnetic resonance imaging: a meta-analysis. Int J Clin Exp Med. 2015;8(8):11881–9.PubMedPubMedCentral Fang HW, Yang L, Wang XR, Zhu H. Clinical efficacy of dexmedetomidine versus propofol in children undergoing magnetic resonance imaging: a meta-analysis. Int J Clin Exp Med. 2015;8(8):11881–9.PubMedPubMedCentral
37.
go back to reference Salonen M, Reid K, Maze M. Synergistic interaction between alpha 2-adrenergic agonists and benzodiazepines in rats. Anesthesiology. 1992;76(6):1004–11.CrossRefPubMed Salonen M, Reid K, Maze M. Synergistic interaction between alpha 2-adrenergic agonists and benzodiazepines in rats. Anesthesiology. 1992;76(6):1004–11.CrossRefPubMed
38.
go back to reference Moon BS, Park JH, Lee HJ, Lee BC, Kim SE. Routine production of [18F]Flumazenil from iodonium tosylate using a sample pretreatment method: a 2.5-year production report. Mol Imaging Biol. 2014;16(5):619–25.CrossRefPubMed Moon BS, Park JH, Lee HJ, Lee BC, Kim SE. Routine production of [18F]Flumazenil from iodonium tosylate using a sample pretreatment method: a 2.5-year production report. Mol Imaging Biol. 2014;16(5):619–25.CrossRefPubMed
39.
go back to reference Habte F, Ren G, Doyle TC, Liu H, Cheng Z, Paik DS. Impact of a multiple mice holder on quantitation of high-throughput MicroPET imaging with and without Ct attenuation correction. Mol Imaging Biol. 2013;15(5):569–75.CrossRefPubMed Habte F, Ren G, Doyle TC, Liu H, Cheng Z, Paik DS. Impact of a multiple mice holder on quantitation of high-throughput MicroPET imaging with and without Ct attenuation correction. Mol Imaging Biol. 2013;15(5):569–75.CrossRefPubMed
40.
go back to reference Slifstein M, Laruelle M. Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol. 2001;28(5):595–608.CrossRefPubMed Slifstein M, Laruelle M. Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol. 2001;28(5):595–608.CrossRefPubMed
41.
go back to reference Ogden RT, Tarpey T. Estimation in regression models with externally estimated parameters. Biostatistics. 2006;7(1):115–29.CrossRefPubMed Ogden RT, Tarpey T. Estimation in regression models with externally estimated parameters. Biostatistics. 2006;7(1):115–29.CrossRefPubMed
42.
go back to reference Palner M, Shen B, Jeon J, Lin J, Chin FT, Rao J. Preclinical kinetic analysis of the caspase-3/7 PET tracer 18F-C-SNAT: quantifying the changes in blood flow and tumor retention after chemotherapy. J Nucl Med. 2015;56(9):1415–21.CrossRefPubMed Palner M, Shen B, Jeon J, Lin J, Chin FT, Rao J. Preclinical kinetic analysis of the caspase-3/7 PET tracer 18F-C-SNAT: quantifying the changes in blood flow and tumor retention after chemotherapy. J Nucl Med. 2015;56(9):1415–21.CrossRefPubMed
43.
go back to reference Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27(9):1533–9.CrossRefPubMed Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27(9):1533–9.CrossRefPubMed
44.
go back to reference Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G. GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience. 2000;101(4):815–50.CrossRefPubMed Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G. GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience. 2000;101(4):815–50.CrossRefPubMed
45.
go back to reference Olsen RW, Sieghart W. GABAA receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology. 2009;56(1):141–8.CrossRefPubMed Olsen RW, Sieghart W. GABAA receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology. 2009;56(1):141–8.CrossRefPubMed
46.
go back to reference Momosaki S, Hosoi R, Abe K, Inoue O. Remarkable selectivity of the in vivo binding of [3H]Ro15-4513 to α5 subtype of benzodiazepine receptor in the living mouse brain. Synapse. 2010;64(12):928–36.CrossRefPubMed Momosaki S, Hosoi R, Abe K, Inoue O. Remarkable selectivity of the in vivo binding of [3H]Ro15-4513 to α5 subtype of benzodiazepine receptor in the living mouse brain. Synapse. 2010;64(12):928–36.CrossRefPubMed
47.
go back to reference Amini N, Nakao R, Schou M, Halldin C. Identification of PET radiometabolites by cytochrome P450, UHPLC/Q-ToF-MS and fast radio-LC: applied to the PET radioligands [11C]flumazenil, [18F]FE-PE2I, and [11C]PBR28. Anal Bioanal Chem. 2013;405(4):1303–10.CrossRefPubMed Amini N, Nakao R, Schou M, Halldin C. Identification of PET radiometabolites by cytochrome P450, UHPLC/Q-ToF-MS and fast radio-LC: applied to the PET radioligands [11C]flumazenil, [18F]FE-PE2I, and [11C]PBR28. Anal Bioanal Chem. 2013;405(4):1303–10.CrossRefPubMed
48.
go back to reference Bentzen BH, Grunnet M. Central and peripheral GABA(A) receptor regulation of the heart rate depends on the conscious state of the animal. Adv Pharmacol Sci. 2011;2011:578273.PubMedPubMedCentral Bentzen BH, Grunnet M. Central and peripheral GABA(A) receptor regulation of the heart rate depends on the conscious state of the animal. Adv Pharmacol Sci. 2011;2011:578273.PubMedPubMedCentral
49.
go back to reference Froklage FE, Syvänen S, Hendrikse NH, Huisman MC, Molthoff CF, Tagawa Y, et al. [11C]Flumazenil brain uptake is influenced by the blood-brain barrier efflux transporter P-glycoprotein. EJNMMI Res. 2012;2(1):12.CrossRefPubMedPubMedCentral Froklage FE, Syvänen S, Hendrikse NH, Huisman MC, Molthoff CF, Tagawa Y, et al. [11C]Flumazenil brain uptake is influenced by the blood-brain barrier efflux transporter P-glycoprotein. EJNMMI Res. 2012;2(1):12.CrossRefPubMedPubMedCentral
Metadata
Title
Effects of common anesthetic agents on [18F]flumazenil binding to the GABAA receptor
Authors
Mikael Palner
Corinne Beinat
Sam Banister
Francesca Zanderigo
Jun Hyung Park
Bin Shen
Trine Hjoernevik
Jae Ho Jung
Byung Chul Lee
Sang Eun Kim
Lawrence Fung
Frederick T. Chin
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2016
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-016-0235-2

Other articles of this Issue 1/2016

EJNMMI Research 1/2016 Go to the issue