Skip to main content
Top
Published in: EJNMMI Research 1/2015

Open Access 01-12-2015 | Research Article

Imaging of reactive oxygen species using [3H]hydromethidine in mice with cisplatin-induced nephrotoxicity

Authors: Nozomi Takai, Kohji Abe, Misato Tonomura, Natsumi Imamoto, Kazumi Fukumoto, Miwa Ito, Sotaro Momosaki, Kae Fujisawa, Kenji Morimoto, Nobuo Takasu, Osamu Inoue

Published in: EJNMMI Research | Issue 1/2015

Login to get access

Abstract

Background

Reactive oxygen species (ROS) have been implicated in cisplatin-induced nephrotoxicity. The aim of this study was to investigate the potential of using [3H]-labeled N-methyl-2,3-diamino-6-phenyl-dihydrophenanthridine ([3H]hydromethidine) for ex vivo imaging of regional ROS overproduction in mouse kidney induced by cisplatin.

Methods

Male C57BL/6 J mice were intraperitoneally administered with a single dose of cisplatin (30 mg/kg). Renal function was assessed by measuring serum creatinine and blood urea nitrogen (BUN) levels and morphology by histological examination. Renal malondialdehyde levels were measured as a lipid peroxidation marker. Autoradiographic studies were performed with kidney sections from mice at 60 min after [3H]hydromethidine injection.

Results

Radioactivity accumulation after [3H]hydromethidine injection was observed in the renal corticomedullary area of cisplatin-treated mice and was attenuated by pretreatment with dimethylthiourea (DMTU), a hydroxyl radical scavenger. Cisplatin administration significantly elevated serum creatinine and BUN levels, caused renal tissue damage, and promoted renal lipid peroxidation. These changes were significantly suppressed by DMTU pretreatment.

Conclusions

The present study showed that [3H]hydromethidine was rapidly distributed to the kidney after its injection and trapped there in the presence of ROS such as hydroxyl radicals, suggesting that [3H]hydromethidine is useful for assessment of the renal ROS amount in cisplatin-induced nephrotoxicity.
Literature
1.
go back to reference Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.PubMed Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.PubMed
2.
go back to reference Baliga R, Ueda N, Walker PD, Shah SV. Oxidant mechanisms in toxic acute renal failure. Drug Metab Rev. 1999;31:971–97.PubMedCrossRef Baliga R, Ueda N, Walker PD, Shah SV. Oxidant mechanisms in toxic acute renal failure. Drug Metab Rev. 1999;31:971–97.PubMedCrossRef
3.
go back to reference Parra Cid T, Conejo García JR, Carballo Alvarez F, de Arriba G. Antioxidant nutrients protect against cyclosporine A nephrotoxicity. Toxicology. 2003;189:99–111.PubMedCrossRef Parra Cid T, Conejo García JR, Carballo Alvarez F, de Arriba G. Antioxidant nutrients protect against cyclosporine A nephrotoxicity. Toxicology. 2003;189:99–111.PubMedCrossRef
4.
go back to reference Kohda Y, Gemba M. Cephaloridine induces translocation of protein kinase C delta into mitochondria and enhances mitochondrial generation of free radicals in the kidney cortex of rats causing renal dysfunction. J Pharmacol Sci. 2005;98:49–57.PubMedCrossRef Kohda Y, Gemba M. Cephaloridine induces translocation of protein kinase C delta into mitochondria and enhances mitochondrial generation of free radicals in the kidney cortex of rats causing renal dysfunction. J Pharmacol Sci. 2005;98:49–57.PubMedCrossRef
5.
go back to reference Kadkhodaee M, Khastar H, Arab HA, Ghaznavi R, Zahmatkesh M, Mahdavi-Mazdeh M. Antioxidant vitamins preserve superoxide dismutase activities in gentamicin-induced nephrotoxicity. Transplant Proc. 2007;39:864–5.PubMedCrossRef Kadkhodaee M, Khastar H, Arab HA, Ghaznavi R, Zahmatkesh M, Mahdavi-Mazdeh M. Antioxidant vitamins preserve superoxide dismutase activities in gentamicin-induced nephrotoxicity. Transplant Proc. 2007;39:864–5.PubMedCrossRef
6.
go back to reference Shackelford RE, Kaufmann WK, Paules RS. Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med. 2000;28:1387–404.PubMedCrossRef Shackelford RE, Kaufmann WK, Paules RS. Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med. 2000;28:1387–404.PubMedCrossRef
7.
go back to reference Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev. 2001;53:135–59.PubMed Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev. 2001;53:135–59.PubMed
8.
go back to reference Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel). 2010;2:2490–518.CrossRef Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel). 2010;2:2490–518.CrossRef
9.
go back to reference Ramesh G, Reeves WB. p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. Am J Physiol Renal Physiol. 2005;289:F166–74.PubMedCrossRef Ramesh G, Reeves WB. p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. Am J Physiol Renal Physiol. 2005;289:F166–74.PubMedCrossRef
10.
go back to reference Jiang M, Wei Q, Pabla N, Dong G, Wang CY, Yang T, et al. Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem Pharmacol. 2007;73:1499–510.PubMedCentralPubMedCrossRef Jiang M, Wei Q, Pabla N, Dong G, Wang CY, Yang T, et al. Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem Pharmacol. 2007;73:1499–510.PubMedCentralPubMedCrossRef
11.
go back to reference Santos NA, Bezerra CS, Martins NM, Curti C, Bianchi ML, Santos AC. Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Cancer Chemother Pharmacol. 2008;61:145–55.PubMedCrossRef Santos NA, Bezerra CS, Martins NM, Curti C, Bianchi ML, Santos AC. Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Cancer Chemother Pharmacol. 2008;61:145–55.PubMedCrossRef
12.
go back to reference Tsuji T, Kato A, Yasuda H, Miyaji T, Luo J, Sakao Y, et al. The dimethylthiourea-induced attenuation of cisplatin nephrotoxicity is associated with the augmented induction of heat shock proteins. Toxicol Appl Pharmacol. 2009;234:202–8.PubMedCrossRef Tsuji T, Kato A, Yasuda H, Miyaji T, Luo J, Sakao Y, et al. The dimethylthiourea-induced attenuation of cisplatin nephrotoxicity is associated with the augmented induction of heat shock proteins. Toxicol Appl Pharmacol. 2009;234:202–8.PubMedCrossRef
13.
go back to reference Kielland A, Blom T, Nandakumar KS, Holmdahl R, Blomhoff R, Carlsen H. In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012. Free Radic Biol Med. 2009;47:760–6.PubMedCrossRef Kielland A, Blom T, Nandakumar KS, Holmdahl R, Blomhoff R, Carlsen H. In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012. Free Radic Biol Med. 2009;47:760–6.PubMedCrossRef
15.
go back to reference Asghar MN, Emani R, Alam C, Helenius TO, Grönroos TJ, Sareila O, et al. In vivo imaging of reactive oxygen and nitrogen species in murine colitis. Inflamm Bowel Dis. 2014;20:1435–47.PubMedCrossRef Asghar MN, Emani R, Alam C, Helenius TO, Grönroos TJ, Sareila O, et al. In vivo imaging of reactive oxygen and nitrogen species in murine colitis. Inflamm Bowel Dis. 2014;20:1435–47.PubMedCrossRef
16.
go back to reference Kundu K, Knight SF, Willett N, Lee S, Taylor WR, Murthy N. Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew Chem Int Ed Engl. 2009;48:299–303.PubMedCrossRef Kundu K, Knight SF, Willett N, Lee S, Taylor WR, Murthy N. Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew Chem Int Ed Engl. 2009;48:299–303.PubMedCrossRef
17.
go back to reference Kundu K, Knight SF, Lee S, Taylor WR, Murthy N. A significant improvement of the efficacy of radical oxidant probes by the kinetic isotope effect. Angew Chem Int Ed Engl. 2010;49:6134–8.PubMedCentralPubMedCrossRef Kundu K, Knight SF, Lee S, Taylor WR, Murthy N. A significant improvement of the efficacy of radical oxidant probes by the kinetic isotope effect. Angew Chem Int Ed Engl. 2010;49:6134–8.PubMedCentralPubMedCrossRef
18.
go back to reference Bindokas VP, Kuznetsov A, Sreenan S, Polonsky KS, Roe MW, Philipson LH. Visualizing superoxide production in normal and diabetic rat islets of Langerhans. J Biol Chem. 2003;278:9796–801.PubMedCrossRef Bindokas VP, Kuznetsov A, Sreenan S, Polonsky KS, Roe MW, Philipson LH. Visualizing superoxide production in normal and diabetic rat islets of Langerhans. J Biol Chem. 2003;278:9796–801.PubMedCrossRef
19.
go back to reference Hall DJ, Han SH, Chepetan A, Inui EG, Rogers M, Dugan LL. Dynamic optical imaging of metabolic and NADPH oxidase-derived superoxide in live mouse brain using fluorescence lifetime unmixing. J Cereb Blood Flow Metab. 2012;32:23–32.PubMedCentralPubMedCrossRef Hall DJ, Han SH, Chepetan A, Inui EG, Rogers M, Dugan LL. Dynamic optical imaging of metabolic and NADPH oxidase-derived superoxide in live mouse brain using fluorescence lifetime unmixing. J Cereb Blood Flow Metab. 2012;32:23–32.PubMedCentralPubMedCrossRef
20.
go back to reference Takamiya M, Miyamoto Y, Yamashita T, Deguchi K, Ohta Y, Abe K. Strong neuroprotection with a novel platinum nanoparticle against ischemic stroke- and tissue plasminogen activator-related brain damages in mice. Neuroscience. 2012;221:47–55.PubMedCrossRef Takamiya M, Miyamoto Y, Yamashita T, Deguchi K, Ohta Y, Abe K. Strong neuroprotection with a novel platinum nanoparticle against ischemic stroke- and tissue plasminogen activator-related brain damages in mice. Neuroscience. 2012;221:47–55.PubMedCrossRef
21.
go back to reference Sun L, Wolferts G, Veltkamp R. Oxygen therapy does not increase production and damage induced by reactive oxygen species in focal cerebral ischemia. Neurosci Lett. 2014;577:1–5.PubMedCrossRef Sun L, Wolferts G, Veltkamp R. Oxygen therapy does not increase production and damage induced by reactive oxygen species in focal cerebral ischemia. Neurosci Lett. 2014;577:1–5.PubMedCrossRef
22.
go back to reference Abe K, Takai N, Fukumoto K, Imamoto N, Tonomura M, Ito M, et al. In vivo imaging of reactive oxygen species in mouse brain by using [3H]hydromethidine as a potential radical trapping radiotracer. J Cereb Blood Flow Metab. 2014;34:1907–13.PubMedCrossRef Abe K, Takai N, Fukumoto K, Imamoto N, Tonomura M, Ito M, et al. In vivo imaging of reactive oxygen species in mouse brain by using [3H]hydromethidine as a potential radical trapping radiotracer. J Cereb Blood Flow Metab. 2014;34:1907–13.PubMedCrossRef
23.
go back to reference Wei Q, Wang MH, Dong Z. Differential gender differences in ischemic and nephrotoxic acute renal failure. Am J Nephrol. 2005;25:491–9.PubMedCrossRef Wei Q, Wang MH, Dong Z. Differential gender differences in ischemic and nephrotoxic acute renal failure. Am J Nephrol. 2005;25:491–9.PubMedCrossRef
24.
go back to reference Domitrović R, Potočnjak I, Crnčević-Orlić Z, Škoda M. Nephroprotective activities of rosmarinic acid against cisplatin-induced kidney injury in mice. Food Chem Toxicol. 2014;66:321–8.PubMedCrossRef Domitrović R, Potočnjak I, Crnčević-Orlić Z, Škoda M. Nephroprotective activities of rosmarinic acid against cisplatin-induced kidney injury in mice. Food Chem Toxicol. 2014;66:321–8.PubMedCrossRef
25.
go back to reference Gonzales-Vitale JC, Hayes DM, Cvitkovic E, Sternberg SS. The renal pathology in clinical trials of cis-platinum (II) diamminedichloride. Cancer. 1977;39:1362–71.PubMedCrossRef Gonzales-Vitale JC, Hayes DM, Cvitkovic E, Sternberg SS. The renal pathology in clinical trials of cis-platinum (II) diamminedichloride. Cancer. 1977;39:1362–71.PubMedCrossRef
26.
go back to reference Arjumand W, Sultana S. Glycyrrhizic acid: a phytochemical with a protective role against cisplatin-induced genotoxicity and nephrotoxicity. Life Sci. 2011;89:422–9.PubMedCrossRef Arjumand W, Sultana S. Glycyrrhizic acid: a phytochemical with a protective role against cisplatin-induced genotoxicity and nephrotoxicity. Life Sci. 2011;89:422–9.PubMedCrossRef
27.
go back to reference Wei J, Chen X, Li Q, Chen J, Khan N, Wang B, et al. ELR-CXC chemokine antagonism and cisplatin co-treatment additively reduce H22 hepatoma tumor progression and ameliorate cisplatin-induced nephrotoxicity. Oncol Rep. 2014;31:1599–604.PubMed Wei J, Chen X, Li Q, Chen J, Khan N, Wang B, et al. ELR-CXC chemokine antagonism and cisplatin co-treatment additively reduce H22 hepatoma tumor progression and ameliorate cisplatin-induced nephrotoxicity. Oncol Rep. 2014;31:1599–604.PubMed
28.
go back to reference Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334:115–24.PubMedCrossRef Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334:115–24.PubMedCrossRef
29.
go back to reference Pabla N, Murphy RF, Liu K, Dong Z. The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am J Physiol Renal Physiol. 2009;296:F505–11.PubMedCentralPubMedCrossRef Pabla N, Murphy RF, Liu K, Dong Z. The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am J Physiol Renal Physiol. 2009;296:F505–11.PubMedCentralPubMedCrossRef
30.
go back to reference Chu W, Chepetan A, Zhou D, Shoghi KI, Xu J, Dugan LL, et al. Development of a PET radiotracer for non-invasive imaging of the reactive oxygen species, superoxide, in vivo. Org Biomol Chem. 2014;12:4421–31.PubMedCentralPubMedCrossRef Chu W, Chepetan A, Zhou D, Shoghi KI, Xu J, Dugan LL, et al. Development of a PET radiotracer for non-invasive imaging of the reactive oxygen species, superoxide, in vivo. Org Biomol Chem. 2014;12:4421–31.PubMedCentralPubMedCrossRef
31.
go back to reference Carroll V, Michel BW, Blecha J, VanBrocklin H, Keshari K, Wilson D, et al. A boronate-caged [18F]FLT probe for hydrogen peroxide detection using positron emission tomography. J Am Chem Soc. 2014;136:14742–5.PubMedCrossRef Carroll V, Michel BW, Blecha J, VanBrocklin H, Keshari K, Wilson D, et al. A boronate-caged [18F]FLT probe for hydrogen peroxide detection using positron emission tomography. J Am Chem Soc. 2014;136:14742–5.PubMedCrossRef
32.
go back to reference Sugiyama A, Sun J, Nishinohara M, Fujita Y, Masuda A, Ochi T, et al. Expressions of lipid oxidation markers, N(ε)-hexanoyl lysine and acrolein in cisplatin-induced nephrotoxicity in rats. J Vet Med Sci. 2011;73:821–6.PubMedCrossRef Sugiyama A, Sun J, Nishinohara M, Fujita Y, Masuda A, Ochi T, et al. Expressions of lipid oxidation markers, N(ε)-hexanoyl lysine and acrolein in cisplatin-induced nephrotoxicity in rats. J Vet Med Sci. 2011;73:821–6.PubMedCrossRef
Metadata
Title
Imaging of reactive oxygen species using [3H]hydromethidine in mice with cisplatin-induced nephrotoxicity
Authors
Nozomi Takai
Kohji Abe
Misato Tonomura
Natsumi Imamoto
Kazumi Fukumoto
Miwa Ito
Sotaro Momosaki
Kae Fujisawa
Kenji Morimoto
Nobuo Takasu
Osamu Inoue
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2015
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-015-0116-0

Other articles of this Issue 1/2015

EJNMMI Research 1/2015 Go to the issue