Skip to main content
Top
Published in: EJNMMI Research 1/2014

Open Access 01-12-2014 | Original research

Identification of positron emission tomography (PET) tracer candidates by prediction of the target-bound fraction in the brain

Authors: Markus Fridén, Marie Wennerberg, Madeleine Antonsson, Maria Sandberg-Ställ, Lars Farde, Magnus Schou

Published in: EJNMMI Research | Issue 1/2014

Login to get access

Abstract

Background

Development of tracers for imaging with positron emission tomography (PET) is often a time-consuming process associated with considerable attrition. In an effort to simplify this process, we herein propose a mechanistically integrated approach for the selection of tracer candidates based on in vitro measurements of ligand affinity (Kd), non-specific binding in brain tissue (Vu,brain), and target protein expression (Bmax).

Methods

A dataset of 35 functional and 12 non-functional central nervous system (CNS) PET tracers was compiled. Data was identified in literature for Kd and Bmax, whereas a brain slice methodology was used to determine values for Vu,brain. A mathematical prediction model for the target-bound fraction of tracer in the brain (ftb) was derived and evaluated with respect to how well it predicts tracer functionality compared to traditional PET tracer candidate selection criteria.

Results

The methodology correctly classified 31/35 functioning and 12/12 non-functioning tracers. This predictivity was superior to traditional classification criteria or combinations thereof.

Conclusions

The presented CNS PET tracer identification approach is rapid and accurate and is expected to facilitate the development of novel PET tracers for the molecular imaging community.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pike VW: PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol Sci 2009, 30: 431-440. 10.1016/j.tips.2009.05.005PubMedCentralCrossRefPubMed Pike VW: PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol Sci 2009, 30: 431-440. 10.1016/j.tips.2009.05.005PubMedCentralCrossRefPubMed
2.
go back to reference Halldin C, Gulyas B, Langer O, Farde L: Brain radioligands-state of the art and new trends. Q J Nucl Med 2001, 45: 139-152.PubMed Halldin C, Gulyas B, Langer O, Farde L: Brain radioligands-state of the art and new trends. Q J Nucl Med 2001, 45: 139-152.PubMed
3.
go back to reference Cunningham VJ, Parker CA, Rabiner EA, Gee AD, Gunn RN: PET studies in drug development: methodological considerations. Drug Discov Today 2005, 2: 311-315. 10.1016/j.ddtec.2005.11.003CrossRef Cunningham VJ, Parker CA, Rabiner EA, Gee AD, Gunn RN: PET studies in drug development: methodological considerations. Drug Discov Today 2005, 2: 311-315. 10.1016/j.ddtec.2005.11.003CrossRef
4.
go back to reference Waterhouse RN: Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol Imaging Biol 2003, 5: 376-389. 10.1016/j.mibio.2003.09.014CrossRefPubMed Waterhouse RN: Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol Imaging Biol 2003, 5: 376-389. 10.1016/j.mibio.2003.09.014CrossRefPubMed
5.
go back to reference Patel S, Gibson R: In vivo site-directed radiotracers: a mini-review. Nucl Med Biol 2008, 35: 805-815. 10.1016/j.nucmedbio.2008.10.002CrossRefPubMed Patel S, Gibson R: In vivo site-directed radiotracers: a mini-review. Nucl Med Biol 2008, 35: 805-815. 10.1016/j.nucmedbio.2008.10.002CrossRefPubMed
6.
go back to reference Rosso L, Gee AD, Gould IR: Ab initio computational study of positron emission tomography ligands interacting with lipid molecule for the prediction of nonspecific binding. J Comput Chem 2008, 29: 2397-2405. 10.1002/jcc.20972CrossRefPubMed Rosso L, Gee AD, Gould IR: Ab initio computational study of positron emission tomography ligands interacting with lipid molecule for the prediction of nonspecific binding. J Comput Chem 2008, 29: 2397-2405. 10.1002/jcc.20972CrossRefPubMed
7.
go back to reference Jiang Z, Reilly J, Everatt B, Briard E: A rapid vesicle electrokinetic chromatography method for the in vitro prediction of non-specific binding for potential PET ligands. J Pharm Biomed Anal 2011, 54: 722-729. 10.1016/j.jpba.2010.11.004CrossRefPubMed Jiang Z, Reilly J, Everatt B, Briard E: A rapid vesicle electrokinetic chromatography method for the in vitro prediction of non-specific binding for potential PET ligands. J Pharm Biomed Anal 2011, 54: 722-729. 10.1016/j.jpba.2010.11.004CrossRefPubMed
8.
go back to reference Guo Q, Brady M, Gunn RN: A biomathematical modeling approach to central nervous system radioligand discovery and development. J Nucl Med 2009, 50: 1715-1723. 10.2967/jnumed.109.063800CrossRefPubMed Guo Q, Brady M, Gunn RN: A biomathematical modeling approach to central nervous system radioligand discovery and development. J Nucl Med 2009, 50: 1715-1723. 10.2967/jnumed.109.063800CrossRefPubMed
9.
go back to reference Guo Q, Owen DR, Rabiner EA, Turkheimer FE, Gunn RN: Identifying improved TSPO PET imaging probes through biomathematics: the impact of multiple TSPO binding sites in vivo. Neuroimage 2012, 60: 902-910. 10.1016/j.neuroimage.2011.12.078PubMedCentralCrossRefPubMed Guo Q, Owen DR, Rabiner EA, Turkheimer FE, Gunn RN: Identifying improved TSPO PET imaging probes through biomathematics: the impact of multiple TSPO binding sites in vivo. Neuroimage 2012, 60: 902-910. 10.1016/j.neuroimage.2011.12.078PubMedCentralCrossRefPubMed
10.
go back to reference Zhang L, Villalobos A, Beck EM, Bocan T, Chappie TA, Chen L, Grimwood S, Heck SD, Helal CJ, Hou X, Humphrey JM, Lu J, Skaddan MB, McCarthy TJ, Verhoest PR, Wager TT, Zasadny K: Design and selection parameters to accelerate the discovery of novel central nervous system positron emission tomography (PET) ligands and their application in the development of a novel phosphodiesterase 2A PET ligand. J Med Chem 2013, 56: 4568-4579. 10.1021/jm400312yCrossRefPubMed Zhang L, Villalobos A, Beck EM, Bocan T, Chappie TA, Chen L, Grimwood S, Heck SD, Helal CJ, Hou X, Humphrey JM, Lu J, Skaddan MB, McCarthy TJ, Verhoest PR, Wager TT, Zasadny K: Design and selection parameters to accelerate the discovery of novel central nervous system positron emission tomography (PET) ligands and their application in the development of a novel phosphodiesterase 2A PET ligand. J Med Chem 2013, 56: 4568-4579. 10.1021/jm400312yCrossRefPubMed
11.
go back to reference Friden M, Ducrozet F, Antonsson M, Middleton B, Bredberg U, Hammarlund-Udenaes M: Development of a high-throughput brain slice method for studying drug distribution in the CNS. Drug Metab Dispos 2009, 37: 1226. 10.1124/dmd.108.026377CrossRefPubMed Friden M, Ducrozet F, Antonsson M, Middleton B, Bredberg U, Hammarlund-Udenaes M: Development of a high-throughput brain slice method for studying drug distribution in the CNS. Drug Metab Dispos 2009, 37: 1226. 10.1124/dmd.108.026377CrossRefPubMed
12.
go back to reference Friden M, Bergstrom F, Wan H, Rehngren M, Ahlin G, Hammarlund-Udenaes M, Bredberg U: Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metab Dispos 2011, 39: 353-362. 10.1124/dmd.110.035998CrossRefPubMed Friden M, Bergstrom F, Wan H, Rehngren M, Ahlin G, Hammarlund-Udenaes M, Bredberg U: Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metab Dispos 2011, 39: 353-362. 10.1124/dmd.110.035998CrossRefPubMed
13.
go back to reference Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE: Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metable 2007, 27: 1533-1539. 10.1038/sj.jcbfm.9600493CrossRef Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE: Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metable 2007, 27: 1533-1539. 10.1038/sj.jcbfm.9600493CrossRef
14.
go back to reference Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A: On the rate and extent of drug delivery to the brain. Pharm Res 2008, 25: 1737-1750. 10.1007/s11095-007-9502-2PubMedCentralCrossRefPubMed Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A: On the rate and extent of drug delivery to the brain. Pharm Res 2008, 25: 1737-1750. 10.1007/s11095-007-9502-2PubMedCentralCrossRefPubMed
15.
go back to reference Farde L, Eriksson L, Blomquist G, Halldin C: Kinetic analysis of central [llC]Raclopride binding to D2-dopamine receptors studied by PET-a comparison to the equilibrium analysis. J Cereb Blood Flow Metable 1989, 9: 696-708. 10.1038/jcbfm.1989.98CrossRef Farde L, Eriksson L, Blomquist G, Halldin C: Kinetic analysis of central [llC]Raclopride binding to D2-dopamine receptors studied by PET-a comparison to the equilibrium analysis. J Cereb Blood Flow Metable 1989, 9: 696-708. 10.1038/jcbfm.1989.98CrossRef
Metadata
Title
Identification of positron emission tomography (PET) tracer candidates by prediction of the target-bound fraction in the brain
Authors
Markus Fridén
Marie Wennerberg
Madeleine Antonsson
Maria Sandberg-Ställ
Lars Farde
Magnus Schou
Publication date
01-12-2014
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2014
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-014-0050-6

Other articles of this Issue 1/2014

EJNMMI Research 1/2014 Go to the issue