Skip to main content
Top
Published in: Journal of Medical Case Reports 1/2021

Open Access 01-12-2021 | Acute Myeloid Leukemia | Case report

Double and single mixed-lineage leukemia-rearranged subclones in pediatric acute myeloid leukemia: a case report

Authors: Mary McGrath, Gayle Smink

Published in: Journal of Medical Case Reports | Issue 1/2021

Login to get access

Abstract

Background

Acute myeloid leukemia (AML) is a disease with a significant amount of cytogenetic heterogeneity including mixed-lineage leukemia (MLL) gene rearrangements. Pediatric AML commonly has genetic rearrangements which involve chromosome 11q23 in 15–20% of cases, and these genetic abnormalities have been associated with a poorer prognosis (Grimwade et al. in Blood 92:2322–2333, 1998; Raimondi et al. in Blood 94:3707–3716, 1999; Lie et al. in Br J Haematol 122: 217–225). MLL rearrangements in AML have been shown to have multiple different fusion partners (Meyer et al. in Leukemia 23:1490–1499). Heterogeneity of these cytogenetic abnormalities makes it difficult to determine how to approach patients from a treatment standpoint. This difficulty is further complicated when patients have more than a single MLL rearrangement.

Case presentation

A 10-year-old Caucasian girl presented with easy bruising and was found to have acute myeloid leukemia. Her cytogenetics showed two different MLL rearrangements, t(9;11)(p22;q23) and t(11;19)(q23;p13.3). At initial presentation she had no other cytogenetic findings. She responded well to initial therapy and achieved remission following the first induction cycle and completed four rounds of chemotherapy. She subsequently had a relapse of her AML, and her cytogenetics were consistent with a single MLL rearrangement, t(9;11)(p22;q23), in addition to monosomy 7. She was treated with reduction therapy and a haplo-identical bone marrow transplant but ultimately succumbed to her disease.

Conclusion

MLL rearrangements are common in AML, but clinical significance continues to be elusive, and there is conflicting data on the prognostic significance. In the setting of multiple MLL rearrangements, there is concern for reduced survival, although treatment modifications are not currently done in this setting. This report details a case with multiple MLL rearrangements that initially responded to therapy but ultimately had disease progression with a selection of a leukemic clone containing a single MLL rearrangement.
Literature
1.
go back to reference Meyer C, Kowarz E, Hofmann J, et al. New insights to the MLL recombinome of acute leukemias. Leukemia. 2009;23(8):1490–9.CrossRef Meyer C, Kowarz E, Hofmann J, et al. New insights to the MLL recombinome of acute leukemias. Leukemia. 2009;23(8):1490–9.CrossRef
2.
go back to reference Balgobind BV, Raimondi SC, Harbott J, et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood. 2009;114(12):2489–96.CrossRef Balgobind BV, Raimondi SC, Harbott J, et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood. 2009;114(12):2489–96.CrossRef
3.
go back to reference Harrison CJ, Hills RK, Moorman AV, et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council Treatment trials AML 10 and 12. J ClinOncol. 2010;28(16):2674–81.CrossRef Harrison CJ, Hills RK, Moorman AV, et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council Treatment trials AML 10 and 12. J ClinOncol. 2010;28(16):2674–81.CrossRef
4.
go back to reference von Neuhoff C, Reinhardt D, Sander A, et al. Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J ClinOncol. 2010;28(16):2682–9.CrossRef von Neuhoff C, Reinhardt D, Sander A, et al. Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J ClinOncol. 2010;28(16):2682–9.CrossRef
5.
go back to reference Bernt KM, Armstrong SA. Targeting epigenetic programs in MLL-rearranged leukemias. Hematology Am SocHematolEduc Program. 2011;2011:354–60. Bernt KM, Armstrong SA. Targeting epigenetic programs in MLL-rearranged leukemias. Hematology Am SocHematolEduc Program. 2011;2011:354–60.
6.
go back to reference Zhang Y, Chen A, Yan XM, Huang G. Disordered epigenetic regulation in MLL-related leukemia. Int J Hematol. 2012;96(4):428–37.CrossRef Zhang Y, Chen A, Yan XM, Huang G. Disordered epigenetic regulation in MLL-related leukemia. Int J Hematol. 2012;96(4):428–37.CrossRef
7.
go back to reference Shukla N, Kobos R, Renaud T, Steinherz LJ, Steinherz PG. Phase II trial of clofarabine with topotecan, vinorelbine, and thiotepa in pediatric patients with relapsed or refractory acute leukemia. Pediatr Blood Cancer. 2014;61(3):431–5.CrossRef Shukla N, Kobos R, Renaud T, Steinherz LJ, Steinherz PG. Phase II trial of clofarabine with topotecan, vinorelbine, and thiotepa in pediatric patients with relapsed or refractory acute leukemia. Pediatr Blood Cancer. 2014;61(3):431–5.CrossRef
8.
go back to reference Daver N, Kantarjian H, Ravandi F, et al. A phase II study of decitabine and gemtuzumab ozogamicin in newly diagnosed and relapsed acute myeloid leukemia and high-risk myelodysplastic syndrome. Leukemia. 2016;30(2):268–73.CrossRef Daver N, Kantarjian H, Ravandi F, et al. A phase II study of decitabine and gemtuzumab ozogamicin in newly diagnosed and relapsed acute myeloid leukemia and high-risk myelodysplastic syndrome. Leukemia. 2016;30(2):268–73.CrossRef
9.
go back to reference Winters AC, Bernt KM. MLL-rearranged leukemias-an update on science and clinical approaches. Front Pediatr. 2017;5:4.CrossRef Winters AC, Bernt KM. MLL-rearranged leukemias-an update on science and clinical approaches. Front Pediatr. 2017;5:4.CrossRef
10.
go back to reference Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood. 1998;92(7):2322–33.CrossRef Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood. 1998;92(7):2322–33.CrossRef
11.
go back to reference Raimondi SC, Chang MN, Ravindranath Y, et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood. 1999;94(11):3707–16.PubMed Raimondi SC, Chang MN, Ravindranath Y, et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood. 1999;94(11):3707–16.PubMed
12.
go back to reference Lie SO, Abrahamsson J, Clausen N, et al. Treatment stratification based on initial in vivo response in acute myeloid leukaemia in children without Down’s syndrome: results of NOPHO-AML trials. Br J Haematol. 2003;122(2):217–25.CrossRef Lie SO, Abrahamsson J, Clausen N, et al. Treatment stratification based on initial in vivo response in acute myeloid leukaemia in children without Down’s syndrome: results of NOPHO-AML trials. Br J Haematol. 2003;122(2):217–25.CrossRef
13.
go back to reference Rubnitz JE, Raimondi SC, Tong X, et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol. 2002;20(9):2302–9.CrossRef Rubnitz JE, Raimondi SC, Tong X, et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol. 2002;20(9):2302–9.CrossRef
14.
go back to reference Hossain MJ, Xie L, Caywood EH. Prognostic factors of childhood and adolescent acute myeloid leukemia (AML) survival: evidence from four decades of US population data. Cancer Epidemiol. 2015;39(5):720–6.CrossRef Hossain MJ, Xie L, Caywood EH. Prognostic factors of childhood and adolescent acute myeloid leukemia (AML) survival: evidence from four decades of US population data. Cancer Epidemiol. 2015;39(5):720–6.CrossRef
Metadata
Title
Double and single mixed-lineage leukemia-rearranged subclones in pediatric acute myeloid leukemia: a case report
Authors
Mary McGrath
Gayle Smink
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Medical Case Reports / Issue 1/2021
Electronic ISSN: 1752-1947
DOI
https://doi.org/10.1186/s13256-021-02841-2

Other articles of this Issue 1/2021

Journal of Medical Case Reports 1/2021 Go to the issue