Skip to main content
Top
Published in: Journal of Medical Case Reports 1/2018

Open Access 01-12-2018 | Research article

Intrathoracic pressure regulation therapy applied to ventilated patients for treatment of compromised cerebral perfusion from brain injury

Authors: Anja K. Metzger, Nicolas Segal, Dai Wai Olson, Stephen A. Figueroa, Farid G. Sadaka, Catherine A. Krause, James R. Homuth, Nathaniel T. Burkhart, Robert T. Neumann, Keith G. Lurie, Victor A. Convertino

Published in: Journal of Medical Case Reports | Issue 1/2018

Login to get access

Abstract

Background

Reducing intrathoracic pressure in the setting of compromised cerebral perfusion due to acute brain injury has been associated with reduced intracranial pressure and enhanced cerebral perfusion pressure and blood flow in animals. Noninvasive active intrathoracic pressure regulation lowers intrathoracic pressure, increases preload, reduces the volume of venous blood and cerebral spinal fluid in the skull, and enhances cerebral blood flow. We examined the feasibility of active intrathoracic pressure regulation therapy in patients with brain injury. We hypothesized that active intrathoracic pressure regulation therapy would be associated with lowered intracranial pressure and increased cerebral perfusion pressure in these patients.

Methods

At three institutions, active intrathoracic pressure regulation therapy (CirQlator™, ZOLL) was utilized for 2 consecutive hours in five mechanically ventilated patients with brain injury. A 30-minute interval was used to collect baseline data and determine persistence of effects after device use. End-tidal carbon dioxide was controlled by respiratory rate changes during device use. The intracranial pressure, mean arterial pressure, and cerebral perfusion pressure were recorded at 5-minute intervals throughout all three periods of the protocol. Results for each interval are reported as mean and standard deviation.

Results

Intracranial pressure was decreased in all five patients by an average of 21% during (15 ± 4 mmHg) compared to before active intrathoracic pressure regulation (19 ± 4) (p = 0.005). This effect on intracranial pressure (15 ± 6) was still present in four of the five patients 30 minutes after therapy was discontinued (p = 0.89). As a result, cerebral perfusion pressure was 16% higher during (81 ± 10) compared to before active intrathoracic pressure regulation (70 ± 14) (p = 0.04) and this effect remained present 30 minutes after therapy was discontinued. No adverse events were reported.

Conclusions

These data support the notion that active intrathoracic pressure regulation, in this limited evaluation, can successfully augment cerebral perfusion by lowering intracranial pressure and increasing mean arterial pressure in patients with mild brain injury. The measured effects were immediate on administration of the therapy and persisted to some degree after the therapy was terminated.
Literature
1.
go back to reference Thurman DJ, Alverson C, Dunn KA, Guerrero J, Sniezek JE. Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil. 1999;14:602–15.CrossRefPubMed Thurman DJ, Alverson C, Dunn KA, Guerrero J, Sniezek JE. Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil. 1999;14:602–15.CrossRefPubMed
2.
go back to reference Sosin DM, Sniezek JE, Waxweiler RJ. Trends in death associated with traumatic brain injury, 1979 through 1992. Success and failure. JAMA. 1995;273:1778–80.CrossRefPubMed Sosin DM, Sniezek JE, Waxweiler RJ. Trends in death associated with traumatic brain injury, 1979 through 1992. Success and failure. JAMA. 1995;273:1778–80.CrossRefPubMed
3.
go back to reference Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, Jane JA, Marmarou A, Foulkes MA. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34:216–22.CrossRefPubMed Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, Jane JA, Marmarou A, Foulkes MA. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34:216–22.CrossRefPubMed
4.
go back to reference Max W, Rice DP, MacKenzie EJ. The lifetime cost of injury. Inquiry. 1990;27:332–43.PubMed Max W, Rice DP, MacKenzie EJ. The lifetime cost of injury. Inquiry. 1990;27:332–43.PubMed
5.
go back to reference Changaris DG, McGraw CP, Richardson JD, Garretson HD, Arpin EJ, Shields CB. Correlation of cerebral perfusion pressure and Glasgow coma scale to outcome. J Trauma. 1987;27:1007–13.CrossRefPubMed Changaris DG, McGraw CP, Richardson JD, Garretson HD, Arpin EJ, Shields CB. Correlation of cerebral perfusion pressure and Glasgow coma scale to outcome. J Trauma. 1987;27:1007–13.CrossRefPubMed
6.
go back to reference Murray LS, Teasdale GM, Murray GD, Miller DJ, Pickard JD, Shaw MD. Head injuries in four British neurosurgical centres. Br J Neurosurg. 1999;13:564–9.CrossRefPubMed Murray LS, Teasdale GM, Murray GD, Miller DJ, Pickard JD, Shaw MD. Head injuries in four British neurosurgical centres. Br J Neurosurg. 1999;13:564–9.CrossRefPubMed
7.
go back to reference The Brain Trauma Foundation. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care. Hypotension. J Neurotrauma. 2000;17:591–5.CrossRef The Brain Trauma Foundation. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care. Hypotension. J Neurotrauma. 2000;17:591–5.CrossRef
8.
go back to reference Metzger A, Rees J, Kwon Y, Matsuura T, McKnite S, Lurie KG. Intrathoracic pressure regulation improves cerebral perfusion and cerebral blood flow in a porcine model of brain injury. Shock. 2015;44(Suppl 1):96–102.CrossRefPubMed Metzger A, Rees J, Kwon Y, Matsuura T, McKnite S, Lurie KG. Intrathoracic pressure regulation improves cerebral perfusion and cerebral blood flow in a porcine model of brain injury. Shock. 2015;44(Suppl 1):96–102.CrossRefPubMed
9.
go back to reference Metzger A, Rees J, Segal N, McKnite S, Matsuura T, Convertino VA, Gerhardt RT, Lurie KG. "Fluidless" resuscitation with permissive hypotension via impedance threshold device therapy compared with normal saline resuscitation in a porcine model of severe hemorrhage. J Trauma Acute Care Surg. 2013;75:S203–9.CrossRefPubMed Metzger A, Rees J, Segal N, McKnite S, Matsuura T, Convertino VA, Gerhardt RT, Lurie KG. "Fluidless" resuscitation with permissive hypotension via impedance threshold device therapy compared with normal saline resuscitation in a porcine model of severe hemorrhage. J Trauma Acute Care Surg. 2013;75:S203–9.CrossRefPubMed
10.
go back to reference Metzger A, Matsuura T, McKnite S, Lurie K. The intrathoracic pressure regulator improves cerebral perfusion pressures and carotid blood flow in a porcine model of traumatic brain injury. Circulation. 2008;118:664. Metzger A, Matsuura T, McKnite S, Lurie K. The intrathoracic pressure regulator improves cerebral perfusion pressures and carotid blood flow in a porcine model of traumatic brain injury. Circulation. 2008;118:664.
11.
go back to reference Metzger A, Matsuura T, McKnite S, Marino B, Nadkarni V, Lurie K, Yannopoulos D. The intrathoracic pressure regulator improves hemodynamics and 24-hour survival in a pediatric porcine model of severe hemorrhagic shock. Circulation. 2010;122:Abstract 10.CrossRef Metzger A, Matsuura T, McKnite S, Marino B, Nadkarni V, Lurie K, Yannopoulos D. The intrathoracic pressure regulator improves hemodynamics and 24-hour survival in a pediatric porcine model of severe hemorrhagic shock. Circulation. 2010;122:Abstract 10.CrossRef
12.
go back to reference Kiehna EN, Huffmyer JL, Thiele RH, Scalzo DC, Nemergut EC. Use of the intrathoracic pressure regulator to lower intracranial pressure in patients with altered intracranial elastance: a pilot study. J Neurosurg. 2013;119:756–9.CrossRefPubMed Kiehna EN, Huffmyer JL, Thiele RH, Scalzo DC, Nemergut EC. Use of the intrathoracic pressure regulator to lower intracranial pressure in patients with altered intracranial elastance: a pilot study. J Neurosurg. 2013;119:756–9.CrossRefPubMed
13.
go back to reference Moreno AH, Burchell AR, Van der Woude R, Burke JH. Respiratory regulation of splanchnic and systemic venous return. Am J Phys. 1967;213:455–65. Moreno AH, Burchell AR, Van der Woude R, Burke JH. Respiratory regulation of splanchnic and systemic venous return. Am J Phys. 1967;213:455–65.
14.
go back to reference Convertino VA, Ryan KL, Rickards CA, Glorsky SL, Idris AH, Yannopoulos D, Metzger A, Lurie KG. Optimizing the respiratory pump: harnessing inspiratory resistance to treat systemic hypotension. Respir Care. 2011;56:846–57.CrossRefPubMed Convertino VA, Ryan KL, Rickards CA, Glorsky SL, Idris AH, Yannopoulos D, Metzger A, Lurie KG. Optimizing the respiratory pump: harnessing inspiratory resistance to treat systemic hypotension. Respir Care. 2011;56:846–57.CrossRefPubMed
15.
go back to reference Lurie KG, Voelckel WG, Zielinski T, McKnite S, Lindstrom P, Peterson C, Wenzel V, Lindner KH, Samniah N, Benditt D. Improving standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve in a porcine model of cardiac arrest. Anesth Analg. 2001;93:649–55.CrossRefPubMed Lurie KG, Voelckel WG, Zielinski T, McKnite S, Lindstrom P, Peterson C, Wenzel V, Lindner KH, Samniah N, Benditt D. Improving standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve in a porcine model of cardiac arrest. Anesth Analg. 2001;93:649–55.CrossRefPubMed
16.
go back to reference Segal N, Parquette B, Ziehr J, Yannopoulos D, Lindstrom D. Intrathoracic pressure regulation during cardiopulmonary resuscitation: a feasibility case-series. Resuscitation. 2013;84:450–3.CrossRefPubMed Segal N, Parquette B, Ziehr J, Yannopoulos D, Lindstrom D. Intrathoracic pressure regulation during cardiopulmonary resuscitation: a feasibility case-series. Resuscitation. 2013;84:450–3.CrossRefPubMed
17.
go back to reference Yannopoulos D, McKnite SH, Metzger A, Lurie KG. Intrathoracic pressure regulation for intracranial pressure management in normovolemic and hypovolemic pigs. Crit Care Med. 2006;34:S495–500.CrossRefPubMed Yannopoulos D, McKnite SH, Metzger A, Lurie KG. Intrathoracic pressure regulation for intracranial pressure management in normovolemic and hypovolemic pigs. Crit Care Med. 2006;34:S495–500.CrossRefPubMed
18.
go back to reference Yannopoulos D, Metzger A, McKnite S, Nadkarni V, Aufderheide TP, Idris A, Dries D, Benditt DG, Lurie KG. Intrathoracic pressure regulation improves vital organ perfusion pressures in normovolemic and hypovolemic pigs. Resuscitation. 2006;70:445–53.CrossRefPubMed Yannopoulos D, Metzger A, McKnite S, Nadkarni V, Aufderheide TP, Idris A, Dries D, Benditt DG, Lurie KG. Intrathoracic pressure regulation improves vital organ perfusion pressures in normovolemic and hypovolemic pigs. Resuscitation. 2006;70:445–53.CrossRefPubMed
19.
go back to reference Huffmyer JL, Groves DS, Desouza DG, Littlewood KE, Thiele RH, Nemergut EC. The effect of the intrathoracic pressure regulator on hemodynamics and cardiac output. Shock. 2011;35:114–6.CrossRefPubMed Huffmyer JL, Groves DS, Desouza DG, Littlewood KE, Thiele RH, Nemergut EC. The effect of the intrathoracic pressure regulator on hemodynamics and cardiac output. Shock. 2011;35:114–6.CrossRefPubMed
Metadata
Title
Intrathoracic pressure regulation therapy applied to ventilated patients for treatment of compromised cerebral perfusion from brain injury
Authors
Anja K. Metzger
Nicolas Segal
Dai Wai Olson
Stephen A. Figueroa
Farid G. Sadaka
Catherine A. Krause
James R. Homuth
Nathaniel T. Burkhart
Robert T. Neumann
Keith G. Lurie
Victor A. Convertino
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Medical Case Reports / Issue 1/2018
Electronic ISSN: 1752-1947
DOI
https://doi.org/10.1186/s13256-018-1720-1

Other articles of this Issue 1/2018

Journal of Medical Case Reports 1/2018 Go to the issue