Skip to main content
Top
Published in: Journal of Medical Case Reports 1/2018

Open Access 01-12-2018 | Case report

Long-term continuous N-carbamylglutamate treatment in frequently decompensated propionic acidemia: a case report

Authors: Albina Tummolo, Livio Melpignano, Antonella Carella, Anna Maria Di Mauro, Elvira Piccinno, Marcella Vendemiale, Federica Ortolani, Stefania Fedele, Maristella Masciopinto, Francesco Papadia

Published in: Journal of Medical Case Reports | Issue 1/2018

Login to get access

Abstract

Background

Propionic acidemia is a rare autosomal recessive inherited metabolic disorder that can inhibit the synthesis of N-acetylglutamate, the obligatory activator in urea synthesis, leading to hyperammonemia. N-carbamylglutamate ameliorates hyperammonemia in decompensated propionic acidemia. The effects of long-term continuous N-acetylglutamate administration in such patients are unknown. We report our clinical experience with continuous administration of N-acetylglutamate for 6 years in a patient with propionic acidemia frequently presenting with hyperammonemia.

Case presentation

A male Caucasian patient with frequently decompensated propionic acidemia and hyperammonemia was admitted 78 times for acute attacks during the first 9 years of his life. Continuous daily treatment with oral N-carbamylglutamate 100 mg/kg (50 mg/kg after 6 months) was initiated. During 6 years of treatment, he had a significant decrease in his mean plasma ammonia levels (75.7 μmol/L vs. 140.3 μmol/L before N-carbamylglutamate therapy, p < 0.005 [normal range 50–80 μmol/L]) and fewer acute episodes (two in 6 years).

Conclusion

Our results suggest a benefit of N-acetylglutamate administration outside the emergency setting. If this observation is confirmed, future studies should aim to optimize the dosage and explore effects of the dosage requirements on other drugs and on protein tolerance.
Literature
1.
go back to reference Ogier de Baulny H, Dionisi-Vici C, Wendel U. Branched-chain organic acidurias/acidaemias. In: Saudubray JM, van den Berghe G, Walter JH, editors. Inborn metabolic diseases: diagnosis and management. 5th ed. Berlin: Springer-Verlag; 2012. p. 277–96.CrossRef Ogier de Baulny H, Dionisi-Vici C, Wendel U. Branched-chain organic acidurias/acidaemias. In: Saudubray JM, van den Berghe G, Walter JH, editors. Inborn metabolic diseases: diagnosis and management. 5th ed. Berlin: Springer-Verlag; 2012. p. 277–96.CrossRef
2.
go back to reference Coude FX, Sweetman L, Nyhan WL. Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria: a possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest. 1979;64(6):1544–51.CrossRefPubMedPubMedCentral Coude FX, Sweetman L, Nyhan WL. Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria: a possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest. 1979;64(6):1544–51.CrossRefPubMedPubMedCentral
3.
go back to reference Dercksen M, IJlst L, Duran M, et al. Inhibition of N-acetylglutamate synthase by various monocarboxylic and dicarboxylic short-chain coenzyme A esters and the production of alternative glutamate esters. Biochim Biophys Acta. 2014;1842(12 Pt A):2510–6.CrossRefPubMed Dercksen M, IJlst L, Duran M, et al. Inhibition of N-acetylglutamate synthase by various monocarboxylic and dicarboxylic short-chain coenzyme A esters and the production of alternative glutamate esters. Biochim Biophys Acta. 2014;1842(12 Pt A):2510–6.CrossRefPubMed
4.
go back to reference Baumgartner MR, Hörster F, Dionisi-Vici C, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130.CrossRefPubMedPubMedCentral Baumgartner MR, Hörster F, Dionisi-Vici C, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130.CrossRefPubMedPubMedCentral
5.
go back to reference Abacan M, Boneh A. Use of carglumic acid in the treatment of hyperammonaemia during metabolic decompensation of patients with propionic acidaemia. Mol Genet Metab. 2013;109:397–401.CrossRefPubMed Abacan M, Boneh A. Use of carglumic acid in the treatment of hyperammonaemia during metabolic decompensation of patients with propionic acidaemia. Mol Genet Metab. 2013;109:397–401.CrossRefPubMed
6.
go back to reference Pérez B, Desviat LR, Rodríguez-Pombo P, et al. Propionic acidemia: identification of twenty-four novel mutations in Europe and North America. Mol Genet Metab. 2003;78:59–67.CrossRefPubMed Pérez B, Desviat LR, Rodríguez-Pombo P, et al. Propionic acidemia: identification of twenty-four novel mutations in Europe and North America. Mol Genet Metab. 2003;78:59–67.CrossRefPubMed
7.
go back to reference Filippi L, Gozzini E, Fiorini P, et al. N-carbamylglutamate in emergency management of hyperammonemia in neonatal acute onset propionic and methylmalonic aciduria. Neonatology. 2010;97:286–90.CrossRefPubMed Filippi L, Gozzini E, Fiorini P, et al. N-carbamylglutamate in emergency management of hyperammonemia in neonatal acute onset propionic and methylmalonic aciduria. Neonatology. 2010;97:286–90.CrossRefPubMed
8.
go back to reference Tummolo A, Favia V, Bellantuono R, et al. Successful early management of a female patient with a metabolic stroke due to ornithine transcarbamylase deficiency. Pediatr Emerg Care. 2013;29:656–8.CrossRefPubMed Tummolo A, Favia V, Bellantuono R, et al. Successful early management of a female patient with a metabolic stroke due to ornithine transcarbamylase deficiency. Pediatr Emerg Care. 2013;29:656–8.CrossRefPubMed
9.
go back to reference Burlina A, Cazzorla C, Zanonato E, et al. Clinical experience with N-carbamylglutamate in a single-centre cohort of patients with propionic and methylmalonic aciduria. Mol Genet Metab Rep. 2016;8:34–40.CrossRefPubMedPubMedCentral Burlina A, Cazzorla C, Zanonato E, et al. Clinical experience with N-carbamylglutamate in a single-centre cohort of patients with propionic and methylmalonic aciduria. Mol Genet Metab Rep. 2016;8:34–40.CrossRefPubMedPubMedCentral
10.
go back to reference Valayannopoulos V, Baruteau J, Delgado MB, et al. Carglumic acid enhances rapid ammonia detoxification in classical organic acidurias with a favourable risk-benefit profile: a retrospective observational study. Orphanet J Rare Dis. 2016;11:32.CrossRefPubMedPubMedCentral Valayannopoulos V, Baruteau J, Delgado MB, et al. Carglumic acid enhances rapid ammonia detoxification in classical organic acidurias with a favourable risk-benefit profile: a retrospective observational study. Orphanet J Rare Dis. 2016;11:32.CrossRefPubMedPubMedCentral
11.
go back to reference Yap S, Leong HY, Abdul Aziz F, et al. N-carbamylglutamate is an effective treatment for acute neonatal hyperammonaemia in a patient with methylmalonic aciduria. Neonatology. 2016;109:303–7.CrossRefPubMed Yap S, Leong HY, Abdul Aziz F, et al. N-carbamylglutamate is an effective treatment for acute neonatal hyperammonaemia in a patient with methylmalonic aciduria. Neonatology. 2016;109:303–7.CrossRefPubMed
12.
go back to reference Ierardi-Curto L, Kaplan P, Saitta S, et al. The glutamine paradox in a neonate with propionic acidaemia and severe hyperammonaemia. J Inherit Metab Dis. 2000;23:85–6.CrossRefPubMed Ierardi-Curto L, Kaplan P, Saitta S, et al. The glutamine paradox in a neonate with propionic acidaemia and severe hyperammonaemia. J Inherit Metab Dis. 2000;23:85–6.CrossRefPubMed
13.
go back to reference Filipowicz HR, Ernst SL, Ashurst CL, et al. Metabolic changes associated with hyperammonemia in patients with propionic acidemia. Mol Genet Metab. 2006;88:123–30.CrossRefPubMed Filipowicz HR, Ernst SL, Ashurst CL, et al. Metabolic changes associated with hyperammonemia in patients with propionic acidemia. Mol Genet Metab. 2006;88:123–30.CrossRefPubMed
14.
go back to reference Corbeel L, Tada K, Colombo JP, et al. Methylmalonic acidaemia and nonketotic hyperglycinaemia: clinical and biochemical aspects. Arch Dis Child. 1975;50:103–9.CrossRefPubMedPubMedCentral Corbeel L, Tada K, Colombo JP, et al. Methylmalonic acidaemia and nonketotic hyperglycinaemia: clinical and biochemical aspects. Arch Dis Child. 1975;50:103–9.CrossRefPubMedPubMedCentral
15.
go back to reference Kølvraa S. Inhibition of the glycine cleavage system by branched-chain amino acid metabolites. Pediatr Res. 1979;13:889–93.CrossRefPubMed Kølvraa S. Inhibition of the glycine cleavage system by branched-chain amino acid metabolites. Pediatr Res. 1979;13:889–93.CrossRefPubMed
16.
go back to reference Hayasaka K, Narisawa K, Satoh T, et al. Glycine cleavage system in ketotic hyperglycinemia: a reduction of H-protein activity. Pediatr Res. 1982;16:5–7.CrossRefPubMed Hayasaka K, Narisawa K, Satoh T, et al. Glycine cleavage system in ketotic hyperglycinemia: a reduction of H-protein activity. Pediatr Res. 1982;16:5–7.CrossRefPubMed
Metadata
Title
Long-term continuous N-carbamylglutamate treatment in frequently decompensated propionic acidemia: a case report
Authors
Albina Tummolo
Livio Melpignano
Antonella Carella
Anna Maria Di Mauro
Elvira Piccinno
Marcella Vendemiale
Federica Ortolani
Stefania Fedele
Maristella Masciopinto
Francesco Papadia
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Medical Case Reports / Issue 1/2018
Electronic ISSN: 1752-1947
DOI
https://doi.org/10.1186/s13256-018-1631-1

Other articles of this Issue 1/2018

Journal of Medical Case Reports 1/2018 Go to the issue