Skip to main content
Top
Published in: Journal of Medical Case Reports 1/2017

Open Access 01-12-2017 | Case report

Severe toxicity induced by accumulation of active sunitinib metabolite in a Japanese patient with renal cell carcinoma: a case report

Authors: Shinya Takasaki, Masafumi Kikuchi, Yoshihide Kawasaki, Akihiro Ito, Yoichi Arai, Hiroaki Yamaguchi, Nariyasu Mano

Published in: Journal of Medical Case Reports | Issue 1/2017

Login to get access

Abstract

Background

Sunitinib is a multi-targeted tyrosine kinase inhibitor that is approved for treatment of renal cell carcinoma as an oral anticancer drug. Therapeutic drug monitoring of total sunitinib (sunitinib and N-desethyl sunitinib) is used in our hospital to improve therapeutic efficacy, while preventing adverse effects. Here, we report the first case of a patient with metastatic renal cell carcinoma undergoing hemodialysis and presenting severe adverse events induced by the accumulation of N-desethyl sunitinib.

Case presentation

A 60-year-old Japanese man was diagnosed with metastatic renal cell carcinoma requiring hemodialysis. On day 26 of the first cycle of sunitinib therapy, our patient presented grade 3 thrombocytopenia and leukopenia, which required interruption of therapy although the plasma levels of total sunitinib in the patient were less than the effective concentration of 50 ng/mL. The elimination half-life of sunitinib was normal at 50.8 hours, but that of N-desethyl sunitinib was an extended 211.4 hours. Moreover, the N-desethyl sunitinib/sunitinib trough level ratio was higher than 1.0. We attribute our patient’s severe adverse events to the excessive accumulation of N-desethyl sunitinib owing to its delayed excretion. Although the reason for the delayed excretion of N-desethyl sunitinib in this patient was unknown, it may have been caused by genetic polymorphisms related to the pharmacokinetics of sunitinib rather than the hemodialysis. In this case, the patient was homozygous for the ABCG2 421C allele, but was capable of potentially harboring polymorphisms in other genes, such as ABCB1, an efflux pump of sunitinib. In addition, even though there is no clear evidence, urinary excretion of the metabolic products of N-desethyl sunitinib could be inhibited by the interaction of transporters such as the organic ion transporter.

Conclusions

The monitoring of not only total sunitinib concentration but also N-desethyl sunitinib concentration and their elimination half-lives during sunitinib therapy is recommended to avoid critical adverse events.
Literature
1.
go back to reference Motzer RJ, Jonasch E, Agarwal N, Beard C, Bhayani S, Bolger GB, et al. Kidney cancer, version 2.2014. J Natl Compr Canc Netw. 2014;12(2):175–82.PubMed Motzer RJ, Jonasch E, Agarwal N, Beard C, Bhayani S, Bolger GB, et al. Kidney cancer, version 2.2014. J Natl Compr Canc Netw. 2014;12(2):175–82.PubMed
2.
go back to reference Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003;9(1):327–37.PubMed Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003;9(1):327–37.PubMed
3.
go back to reference Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.CrossRefPubMed Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.CrossRefPubMed
4.
go back to reference Gao B, Yeap S, Clements A, Balakrishnar B, Wong M, Gurney H. Evidence for therapeutic drug monitoring of targeted anticancer therapies. J Clin Oncol. 2012;30(32):4017–25.CrossRefPubMed Gao B, Yeap S, Clements A, Balakrishnar B, Wong M, Gurney H. Evidence for therapeutic drug monitoring of targeted anticancer therapies. J Clin Oncol. 2012;30(32):4017–25.CrossRefPubMed
5.
go back to reference Adams VR, Leggas M. Sunitinib malate for the treatment of metastatic renal cell carcinoma and gastrointestinal stromal tumors. Clin Ther. 2007;29:1338–53.CrossRefPubMed Adams VR, Leggas M. Sunitinib malate for the treatment of metastatic renal cell carcinoma and gastrointestinal stromal tumors. Clin Ther. 2007;29:1338–53.CrossRefPubMed
6.
go back to reference Goodman VL, Rock EP, Dagher R, Ramchandani RP, Abraham S, Gobburu JV, et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res. 2007;13(5):1367–73.CrossRefPubMed Goodman VL, Rock EP, Dagher R, Ramchandani RP, Abraham S, Gobburu JV, et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res. 2007;13(5):1367–73.CrossRefPubMed
7.
go back to reference Faivre S, Delbaldo C, Vera K, Robert C, Lozahic S, Lassau N, et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol. 2006;24(1):25–35.CrossRefPubMed Faivre S, Delbaldo C, Vera K, Robert C, Lozahic S, Lassau N, et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol. 2006;24(1):25–35.CrossRefPubMed
8.
go back to reference Noda S, Otsuji T, Baba M, Yoshida T, Kageyama S, Okamoto K, et al. Assessment of sunitinib-induced toxicities and clinical outcomes based on therapeutic drug monitoring of sunitinib for patients with renal cell carcinoma. Clin Genitourin Cancer. 2015;13(4):350–8.CrossRefPubMed Noda S, Otsuji T, Baba M, Yoshida T, Kageyama S, Okamoto K, et al. Assessment of sunitinib-induced toxicities and clinical outcomes based on therapeutic drug monitoring of sunitinib for patients with renal cell carcinoma. Clin Genitourin Cancer. 2015;13(4):350–8.CrossRefPubMed
9.
go back to reference Teo YL, Chong XJ, Chue XP, Chau NM, Tan MH, Kanesvaran R, et al. Role of sunitinib and SU12662 on dermatological toxicities in metastatic renal cell carcinoma patients: in vitro, in vivo, and outcomes investigation. Cancer Chemother Pharmacol. 2014;73(2):381–8.CrossRefPubMed Teo YL, Chong XJ, Chue XP, Chau NM, Tan MH, Kanesvaran R, et al. Role of sunitinib and SU12662 on dermatological toxicities in metastatic renal cell carcinoma patients: in vitro, in vivo, and outcomes investigation. Cancer Chemother Pharmacol. 2014;73(2):381–8.CrossRefPubMed
10.
go back to reference Khosravan R, Toh M, Garrett M, La Fargue J, Ni G, Marbury TC, et al. Pharmacokinetics and safety of sunitinib malate in subjects with impaired renal function. J Clin Pharmacol. 2010;50(4):472–81.CrossRefPubMed Khosravan R, Toh M, Garrett M, La Fargue J, Ni G, Marbury TC, et al. Pharmacokinetics and safety of sunitinib malate in subjects with impaired renal function. J Clin Pharmacol. 2010;50(4):472–81.CrossRefPubMed
11.
go back to reference Izzedine H, Etienne-Grimaldi MC, Renée N, Vignot S, Milano G. Pharmacokinetics of sunitinib in hemodialysis. Ann Oncol. 2009;20(1):190–2.CrossRefPubMed Izzedine H, Etienne-Grimaldi MC, Renée N, Vignot S, Milano G. Pharmacokinetics of sunitinib in hemodialysis. Ann Oncol. 2009;20(1):190–2.CrossRefPubMed
12.
go back to reference Noda S, Kageyama S, Tsuru T, Kubota S, Yoshida T, Okamoto K, et al. Pharmacokinetic/pharmacodynamic analysis of a hemodialyzed patient treated with 25 mg of sunitinib. Case Rep Oncol. 2012;5(3):627–32.CrossRefPubMedPubMedCentral Noda S, Kageyama S, Tsuru T, Kubota S, Yoshida T, Okamoto K, et al. Pharmacokinetic/pharmacodynamic analysis of a hemodialyzed patient treated with 25 mg of sunitinib. Case Rep Oncol. 2012;5(3):627–32.CrossRefPubMedPubMedCentral
13.
go back to reference Narjoz C, Cessot A, Thomas-Schoemann A, Golmard JL, Huillard O, Boudou-Rouquette P, et al. Role of the lean body mass and of pharmacogenetic variants on the pharmacokinetics and pharmacodynamics of sunitinib in cancer patients. Invest New Drugs. 2015;33(1):257–68.CrossRefPubMed Narjoz C, Cessot A, Thomas-Schoemann A, Golmard JL, Huillard O, Boudou-Rouquette P, et al. Role of the lean body mass and of pharmacogenetic variants on the pharmacokinetics and pharmacodynamics of sunitinib in cancer patients. Invest New Drugs. 2015;33(1):257–68.CrossRefPubMed
14.
go back to reference Miura Y, Imamura CK, Fukunaga K, Katsuyama Y, Suyama K, Okaneya T, et al. Sunitinib-induced severe toxicities in a Japanese patient with the ABCG2 421 AA genotype. BMC Cancer. 2014;14:964.CrossRefPubMedPubMedCentral Miura Y, Imamura CK, Fukunaga K, Katsuyama Y, Suyama K, Okaneya T, et al. Sunitinib-induced severe toxicities in a Japanese patient with the ABCG2 421 AA genotype. BMC Cancer. 2014;14:964.CrossRefPubMedPubMedCentral
15.
go back to reference Diekstra MH, Swen JJ, Boven E, Castellano D, Gelderblom H, Mathijssen RH, et al. CYP3A5 and ABCB1 polymorphisms as predictors for sunitinib outcome in metastatic renal cell carcinoma. Eur Urol. 2015;68(4):621–9.CrossRefPubMed Diekstra MH, Swen JJ, Boven E, Castellano D, Gelderblom H, Mathijssen RH, et al. CYP3A5 and ABCB1 polymorphisms as predictors for sunitinib outcome in metastatic renal cell carcinoma. Eur Urol. 2015;68(4):621–9.CrossRefPubMed
16.
go back to reference Diekstra MH, Klümpen HJ, Lolkema MP, Yu H, Kloth JS, Gelderblom H, et al. Association analysis of genetic polymorphisms in genes related to sunitinib pharmacokinetics, specifically clearance of sunitinib and SU12662. Clin Pharmacol Ther. 2014;96(1):81–9.CrossRefPubMed Diekstra MH, Klümpen HJ, Lolkema MP, Yu H, Kloth JS, Gelderblom H, et al. Association analysis of genetic polymorphisms in genes related to sunitinib pharmacokinetics, specifically clearance of sunitinib and SU12662. Clin Pharmacol Ther. 2014;96(1):81–9.CrossRefPubMed
17.
go back to reference Speed B, Bu HZ, Pool WF, Peng GW, Wu EY, Patyna S, et al. Pharmacokinetics, distribution, and metabolism of [14C]sunitinib in rats, monkeys, and humans. Drug Metab Dispos. 2012;40(3):539–55.CrossRefPubMed Speed B, Bu HZ, Pool WF, Peng GW, Wu EY, Patyna S, et al. Pharmacokinetics, distribution, and metabolism of [14C]sunitinib in rats, monkeys, and humans. Drug Metab Dispos. 2012;40(3):539–55.CrossRefPubMed
18.
go back to reference Uemura H, Shinohara N, Yuasa T, Tomita Y, Fujimoto H, Niwakawa M, et al. A phase II study of sunitinib in Japanese patients with metastatic renal cell carcinoma: insights into the treatment, efficacy and safety. Jpn J Clin Oncol. 2010;40(3):194–202.CrossRefPubMed Uemura H, Shinohara N, Yuasa T, Tomita Y, Fujimoto H, Niwakawa M, et al. A phase II study of sunitinib in Japanese patients with metastatic renal cell carcinoma: insights into the treatment, efficacy and safety. Jpn J Clin Oncol. 2010;40(3):194–202.CrossRefPubMed
Metadata
Title
Severe toxicity induced by accumulation of active sunitinib metabolite in a Japanese patient with renal cell carcinoma: a case report
Authors
Shinya Takasaki
Masafumi Kikuchi
Yoshihide Kawasaki
Akihiro Ito
Yoichi Arai
Hiroaki Yamaguchi
Nariyasu Mano
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Medical Case Reports / Issue 1/2017
Electronic ISSN: 1752-1947
DOI
https://doi.org/10.1186/s13256-016-1185-z

Other articles of this Issue 1/2017

Journal of Medical Case Reports 1/2017 Go to the issue