Skip to main content
Top
Published in: Molecular Autism 1/2019

Open Access 01-12-2019 | Research

The role of ubiquitin ligase E3A in polarized contact guidance and rescue strategies in UBE3A-deficient hippocampal neurons

Authors: Ilaria Tonazzini, Geeske M. Van Woerden, Cecilia Masciullo, Edwin J. Mientjes, Ype Elgersma, Marco Cecchini

Published in: Molecular Autism | Issue 1/2019

Login to get access

Abstract

Background

Although neuronal extracellular sensing is emerging as crucial for brain wiring and therefore plasticity, little is known about these processes in neurodevelopmental disorders. Ubiquitin protein ligase E3A (UBE3A) plays a key role in neurodevelopment. Lack of UBE3A leads to Angelman syndrome (AS), while its increase is among the most prevalent genetic causes of autism (e.g., Dup15q syndrome). By using microstructured substrates that can induce specific directional stimuli in cells, we previously found deficient topographical contact guidance in AS neurons, which was linked to a dysregulated activation of the focal adhesion pathway.

Methods

Here, we study axon and dendrite contact guidance and neuronal morphological features of wild-type, AS, and UBE3A-overexpressing neurons (Dup15q autism model) on micrograting substrates, with the aim to clarify the role of UBE3A in neuronal guidance.

Results

We found that loss of axonal contact guidance is specific for AS neurons while UBE3A overexpression does not affect neuronal directional polarization along microgratings. Deficits at the level of axonal branching, growth cone orientation and actin fiber content, focal adhesion (FA) effectors, and actin fiber–binding proteins were observed in AS neurons. We tested different rescue strategies for restoring correct topographical guidance in AS neurons on microgratings, by either UBE3A protein re-expression or by pharmacological treatments acting on cytoskeleton contractility. Nocodazole, a drug that depolymerizes microtubules and increases cell contractility, rescued AS axonal alignment to the gratings by partially restoring focal adhesion pathway activation. Surprisingly, UBE3A re-expression only resulted in partial rescue of the phenotype.

Conclusions

We identified a specific in vitro deficit in axonal topographical guidance due selectively to the loss of UBE3A, and we further demonstrate that this defective guidance can be rescued to a certain extent by pharmacological or genetic treatment strategies. Overall, cytoskeleton dynamics emerge as important partners in UBE3A-mediated contact guidance responses. These results support the view that UBE3A-related deficits in early neuronal morphogenesis may lead to defective neuronal connectivity and plasticity.
Appendix
Available only for authorised users
Literature
16.
go back to reference Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Zhang H, et al. NIH Public Access. 2010;459(7246):569–73. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Zhang H, et al. NIH Public Access. 2010;459(7246):569–73.
28.
go back to reference Sato M, Stryker MP. Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a. Proc Natl Acad Sci U S A. 2010;107(12):5611–6.PubMedPubMedCentralCrossRef Sato M, Stryker MP. Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a. Proc Natl Acad Sci U S A. 2010;107(12):5611–6.PubMedPubMedCentralCrossRef
35.
go back to reference Van Woerden GM, Harris KD, Hojjati MR, Gustin RM, Qiu S, De Avila FR, et al. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation. Nat Neurosci. 2007;10(3):280–2.PubMedCrossRef Van Woerden GM, Harris KD, Hojjati MR, Gustin RM, Qiu S, De Avila FR, et al. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation. Nat Neurosci. 2007;10(3):280–2.PubMedCrossRef
46.
go back to reference Meucci S, Tonazzini I, Beltram F, Cecchini M. Biocompatible noisy nanotopographies with specific directionality for controlled anisotropic cell cultures. Soft Matter. 2012;8(4):1109–19.CrossRef Meucci S, Tonazzini I, Beltram F, Cecchini M. Biocompatible noisy nanotopographies with specific directionality for controlled anisotropic cell cultures. Soft Matter. 2012;8(4):1109–19.CrossRef
47.
go back to reference Masciullo C, Sonato A, Romanato F, Cecchini M. Perfluoropolyether (PFPE) intermediate molds for high-resolution thermal nanoimprint lithography. Nanomaterials. 2018;8(8):609.PubMedCentralCrossRef Masciullo C, Sonato A, Romanato F, Cecchini M. Perfluoropolyether (PFPE) intermediate molds for high-resolution thermal nanoimprint lithography. Nanomaterials. 2018;8(8):609.PubMedCentralCrossRef
64.
66.
go back to reference Van Beuningen SFB, Will L, Harterink M, Chazeau A, Van Battum EY, Frias CP, et al. TRIM46 controls neuronal polarity and axon specification by driving the formation of parallel microtubule arrays. Neuron. 2015;88(6):1208–26.PubMedCrossRef Van Beuningen SFB, Will L, Harterink M, Chazeau A, Van Battum EY, Frias CP, et al. TRIM46 controls neuronal polarity and axon specification by driving the formation of parallel microtubule arrays. Neuron. 2015;88(6):1208–26.PubMedCrossRef
70.
Metadata
Title
The role of ubiquitin ligase E3A in polarized contact guidance and rescue strategies in UBE3A-deficient hippocampal neurons
Authors
Ilaria Tonazzini
Geeske M. Van Woerden
Cecilia Masciullo
Edwin J. Mientjes
Ype Elgersma
Marco Cecchini
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2019
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-019-0293-1

Other articles of this Issue 1/2019

Molecular Autism 1/2019 Go to the issue