Skip to main content
Top
Published in: Molecular Autism 1/2019

Open Access 01-12-2019 | Electroencephalography | Research

Autistic traits, resting-state connectivity, and absolute pitch in professional musicians: shared and distinct neural features

Authors: T. Wenhart, R. A. I. Bethlehem, S. Baron-Cohen, E. Altenmüller

Published in: Molecular Autism | Issue 1/2019

Login to get access

Abstract

Background

Recent studies indicate increased autistic traits in musicians with absolute pitch and a higher proportion of absolute pitch in people with autism. Theoretical accounts connect both of these with shared neural principles of local hyper- and global hypoconnectivity, enhanced perceptual functioning, and a detail-focused cognitive style. This is the first study to investigate absolute pitch proficiency, autistic traits, and brain correlates in the same study.

Sample and methods

Graph theoretical analysis was conducted on resting-state (eyes closed and eyes open) EEG connectivity (wPLI, weighted phase lag index) matrices obtained from 31 absolute pitch (AP) and 33 relative pitch (RP) professional musicians. Small-worldness, global clustering coefficient, and average path length were related to autistic traits, passive (tone identification) and active (pitch adjustment) absolute pitch proficiency, and onset of musical training using Welch two-sample tests, correlations, and general linear models.

Results

Analyses revealed increased path length (delta 2–4 Hz), reduced clustering (beta 13–18 Hz), reduced small-worldness (gamma 30–60 Hz), and increased autistic traits for AP compared to RP. Only clustering values (beta 13–18 Hz) were predicted by both AP proficiency and autistic traits. Post hoc single connection permutation tests among raw wPLI matrices in the beta band (13–18 Hz) revealed widely reduced interhemispheric connectivity between bilateral auditory-related electrode positions along with higher connectivity between F7–F8 and F8–P9 for AP. Pitch-naming ability and pitch adjustment ability were predicted by path length, clustering, autistic traits, and onset of musical training (for pitch adjustment) explaining 44% and 38% of variance, respectively.

Conclusions

Results show both shared and distinct neural features between AP and autistic traits. Differences in the beta range were associated with higher autistic traits in the same population. In general, AP musicians exhibit a widely underconnected brain with reduced functional integration and reduced small-world property during resting state. This might be partly related to autism-specific brain connectivity, while differences in path length and small-worldness reflect other ability-specific influences. This is further evidenced for different pathways in the acquisition and development of absolute pitch, likely influenced by both genetic and environmental factors and their interaction.
Literature
1.
go back to reference Baron-Cohen S, Wheelwright S, Burtenshaw A, Hobson E. Mathematical talent is linked to autism. Hum Nat. 2007;18:125–31.CrossRefPubMed Baron-Cohen S, Wheelwright S, Burtenshaw A, Hobson E. Mathematical talent is linked to autism. Hum Nat. 2007;18:125–31.CrossRefPubMed
2.
go back to reference Mitchell P, Ropar D. Visuo-spatial abilities in autism: a review. Infant Child Dev. 2004;13:185–98.CrossRef Mitchell P, Ropar D. Visuo-spatial abilities in autism: a review. Infant Child Dev. 2004;13:185–98.CrossRef
3.
go back to reference Heaton P, Hermelin B, Pring L. Autism and pitch processing: a precursor for savant musical ability? Music Percept Interdiscip J. 1998;15:291–305.CrossRef Heaton P, Hermelin B, Pring L. Autism and pitch processing: a precursor for savant musical ability? Music Percept Interdiscip J. 1998;15:291–305.CrossRef
4.
go back to reference Howlin P, Goode S, Hutton J, Rutter M. Savant skills in autism: psychometric approaches and parental reports. Philos Trans R Soc Lond B Biol Sci. 2009;364:1359–67.CrossRefPubMedPubMedCentral Howlin P, Goode S, Hutton J, Rutter M. Savant skills in autism: psychometric approaches and parental reports. Philos Trans R Soc Lond B Biol Sci. 2009;364:1359–67.CrossRefPubMedPubMedCentral
5.
go back to reference Bor D, Billington J, Baron-Cohen S. Savant memory for digits in a case of synaesthesia and asperger syndrome is related to hyperactivity in the lateral prefrontal cortex. Neurocase. 2008;13:311–9.CrossRef Bor D, Billington J, Baron-Cohen S. Savant memory for digits in a case of synaesthesia and asperger syndrome is related to hyperactivity in the lateral prefrontal cortex. Neurocase. 2008;13:311–9.CrossRef
6.
go back to reference Stevens DE, Moffitt TE. Neuropsychological profile of an asperger’s syndrome case with exceptional calculating ability. Clin Neuropsychol. 1988;2:228–38.CrossRef Stevens DE, Moffitt TE. Neuropsychological profile of an asperger’s syndrome case with exceptional calculating ability. Clin Neuropsychol. 1988;2:228–38.CrossRef
8.
go back to reference Mottron L, Belleville S, Stip E, Morasse K. Atypical memory performance in an autistic savant. Memory. 1998;6:593–607.CrossRefPubMed Mottron L, Belleville S, Stip E, Morasse K. Atypical memory performance in an autistic savant. Memory. 1998;6:593–607.CrossRefPubMed
9.
go back to reference O’Connor N, Hermelin B. The memory structure of autistic idiot-savant mnemonists. Br J Psychol. 1989;80:97–111.CrossRefPubMed O’Connor N, Hermelin B. The memory structure of autistic idiot-savant mnemonists. Br J Psychol. 1989;80:97–111.CrossRefPubMed
10.
12.
go back to reference Gregersen PK, Kowalsky E, Kohn N, Marvin EW. Early childhood music education and predisposition to absolute pitch: teasing apart genes and environment. Am J Med Genet. 2001;98:280–2.CrossRefPubMed Gregersen PK, Kowalsky E, Kohn N, Marvin EW. Early childhood music education and predisposition to absolute pitch: teasing apart genes and environment. Am J Med Genet. 2001;98:280–2.CrossRefPubMed
13.
go back to reference Gregersen PK, Kowalsky E, Kohn N, Marvin EW. Absolute pitch: prevalence, ethnic variation, and estimation of the genetic component. Am J Hum Genet. 1999;65:911–3.CrossRefPubMedPubMedCentral Gregersen PK, Kowalsky E, Kohn N, Marvin EW. Absolute pitch: prevalence, ethnic variation, and estimation of the genetic component. Am J Hum Genet. 1999;65:911–3.CrossRefPubMedPubMedCentral
14.
go back to reference Deutsch D, Henthorn T, Marvin E, Xu H. Absolute pitch among American and Chinese conservatory students: prevalence differences, and evidence for a speech-related critical perioda. J Acoust Soc Am. 2006;119:719–22.CrossRefPubMed Deutsch D, Henthorn T, Marvin E, Xu H. Absolute pitch among American and Chinese conservatory students: prevalence differences, and evidence for a speech-related critical perioda. J Acoust Soc Am. 2006;119:719–22.CrossRefPubMed
15.
16.
go back to reference Zatorre RJ. Absolute pitch: a model for understanding the influence of genes and development on neural and cognitive function. Nat Neurosci. 2003;6:692–5.CrossRefPubMed Zatorre RJ. Absolute pitch: a model for understanding the influence of genes and development on neural and cognitive function. Nat Neurosci. 2003;6:692–5.CrossRefPubMed
17.
go back to reference Bachem A. Various types of absolute pitch. J Acoust Soc Am. 1937;9:146–51.CrossRef Bachem A. Various types of absolute pitch. J Acoust Soc Am. 1937;9:146–51.CrossRef
18.
go back to reference Wengenroth M, Blatow M, Heinecke A, Reinhardt J, Stippich C, Hofmann E, et al. Increased volume and function of right auditory cortex as a marker for absolute pitch. Cereb Cortex. 2014;24:1127–37.CrossRefPubMed Wengenroth M, Blatow M, Heinecke A, Reinhardt J, Stippich C, Hofmann E, et al. Increased volume and function of right auditory cortex as a marker for absolute pitch. Cereb Cortex. 2014;24:1127–37.CrossRefPubMed
19.
go back to reference Wilson SJ, Lusher D, Wan CY, Dudgeon P, Reutens DC. The neurocognitive components of pitch processing: insights from absolute pitch. Cereb Cortex. 2009;19:724–32.CrossRefPubMed Wilson SJ, Lusher D, Wan CY, Dudgeon P, Reutens DC. The neurocognitive components of pitch processing: insights from absolute pitch. Cereb Cortex. 2009;19:724–32.CrossRefPubMed
20.
go back to reference Baharloo S, Johnston PA, Service SK, Gitschier J, Freimer NB. Absolute pitch: an approach for identification of genetic and nongenetic components. Am J Hum Genet. 1998;62:224–31.CrossRefPubMedPubMedCentral Baharloo S, Johnston PA, Service SK, Gitschier J, Freimer NB. Absolute pitch: an approach for identification of genetic and nongenetic components. Am J Hum Genet. 1998;62:224–31.CrossRefPubMedPubMedCentral
21.
go back to reference Athos EA, Levinson B, Kistler A, Zemansky J, Bostrom A, Freimer N, et al. Dichotomy and perceptual distortions in absolute pitch ability. Proc Natl Acad Sci. 2007;104:14795–800.CrossRefPubMedPubMedCentral Athos EA, Levinson B, Kistler A, Zemansky J, Bostrom A, Freimer N, et al. Dichotomy and perceptual distortions in absolute pitch ability. Proc Natl Acad Sci. 2007;104:14795–800.CrossRefPubMedPubMedCentral
22.
go back to reference Deutsch D, Dooley K, Henthorn T, Head B. Absolute pitch among students in an American music conservatory: association with tone language fluency. J Acoust Soc Am. 2009;125:2398–403.CrossRefPubMed Deutsch D, Dooley K, Henthorn T, Head B. Absolute pitch among students in an American music conservatory: association with tone language fluency. J Acoust Soc Am. 2009;125:2398–403.CrossRefPubMed
23.
go back to reference Gregersen PK, Kowalsky E, Lee A, Baron-Cohen S, Fisher SE, Asher JE, et al. Absolute pitch exhibits phenotypic and genetic overlap with synesthesia. Hum Mol Genet. 2013;22:2097–104.CrossRefPubMedPubMedCentral Gregersen PK, Kowalsky E, Lee A, Baron-Cohen S, Fisher SE, Asher JE, et al. Absolute pitch exhibits phenotypic and genetic overlap with synesthesia. Hum Mol Genet. 2013;22:2097–104.CrossRefPubMedPubMedCentral
24.
go back to reference Bonnel A, Mottron L, Peretz I, Trudel M, Gallun E, Bonnel AM. Enhanced pitch sensitivity in individuals with autism: a signal detection analysis. J Cogn Neurosci. 2003;15:226–35.CrossRefPubMed Bonnel A, Mottron L, Peretz I, Trudel M, Gallun E, Bonnel AM. Enhanced pitch sensitivity in individuals with autism: a signal detection analysis. J Cogn Neurosci. 2003;15:226–35.CrossRefPubMed
25.
go back to reference Brenton JN, Devries SP, Barton C, Minnich H, Sokol DK. Absolute pitch in a four-year-old boy with autism. Pediatr Neurol. 2008;39:137–8.CrossRefPubMed Brenton JN, Devries SP, Barton C, Minnich H, Sokol DK. Absolute pitch in a four-year-old boy with autism. Pediatr Neurol. 2008;39:137–8.CrossRefPubMed
26.
go back to reference DePape A-MR, Hall GBC, Tillmann B, Trainor LJ. Auditory processing in high-functioning adolescents with autism spectrum disorder. PLoS One. 2012;7:e44084.CrossRefPubMedPubMedCentral DePape A-MR, Hall GBC, Tillmann B, Trainor LJ. Auditory processing in high-functioning adolescents with autism spectrum disorder. PLoS One. 2012;7:e44084.CrossRefPubMedPubMedCentral
27.
go back to reference Heaton P, Hudry K, Ludlow A, Hill E. Superior discrimination of speech pitch and its relationship to verbal ability in autism spectrum disorders. Cogn Neuropsychol. 2008;25(6):771–82.CrossRefPubMed Heaton P, Hudry K, Ludlow A, Hill E. Superior discrimination of speech pitch and its relationship to verbal ability in autism spectrum disorders. Cogn Neuropsychol. 2008;25(6):771–82.CrossRefPubMed
28.
go back to reference Heaton P. Pitch memory, labelling and disembedding in autism. J Child Psychol Psychiatry. 2003;44:543–51.CrossRefPubMed Heaton P. Pitch memory, labelling and disembedding in autism. J Child Psychol Psychiatry. 2003;44:543–51.CrossRefPubMed
29.
go back to reference Heaton P, Davis RE, Happé FGE. Research note: exceptional absolute pitch perception for spoken words in an able adult with autism. Neuropsychologia. 2008;46:2095–8.CrossRefPubMed Heaton P, Davis RE, Happé FGE. Research note: exceptional absolute pitch perception for spoken words in an able adult with autism. Neuropsychologia. 2008;46:2095–8.CrossRefPubMed
30.
go back to reference Lenhoff HM, Perales O, Hickok G. Absolute pitch in Williams syndrome. Music Percept. 2001;18:491–503.CrossRef Lenhoff HM, Perales O, Hickok G. Absolute pitch in Williams syndrome. Music Percept. 2001;18:491–503.CrossRef
31.
go back to reference Martínez-Castilla P, Sotillo M, Campos R. Do individuals with Williams syndrome possess absolute pitch? Child Neuropsychol. 2013;19:78–96.CrossRefPubMed Martínez-Castilla P, Sotillo M, Campos R. Do individuals with Williams syndrome possess absolute pitch? Child Neuropsychol. 2013;19:78–96.CrossRefPubMed
32.
go back to reference Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med. 1995;25:63.CrossRefPubMed Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med. 1995;25:63.CrossRefPubMed
34.
go back to reference Constantino JN, Zhang Y, Frazier T, Abbacchi AM, Law P. Sibling recurrence and the genetic epidemiology of autism. Am J Psychiatry. 2010;167:1349–56.CrossRefPubMedPubMedCentral Constantino JN, Zhang Y, Frazier T, Abbacchi AM, Law P. Sibling recurrence and the genetic epidemiology of autism. Am J Psychiatry. 2010;167:1349–56.CrossRefPubMedPubMedCentral
37.
go back to reference Bellugi U, Lichtenberger L, Mills D, Galaburda A, Korenberg JR. Bridging cognition, the brain and molecular genetics: evidence from Williams syndrome. Trends Neurosci. 1999;22:197–207.CrossRefPubMed Bellugi U, Lichtenberger L, Mills D, Galaburda A, Korenberg JR. Bridging cognition, the brain and molecular genetics: evidence from Williams syndrome. Trends Neurosci. 1999;22:197–207.CrossRefPubMed
38.
go back to reference Donnai D, Karmiloff-Smith A. Williams syndrome: from genotype through to the cognitive phenotype. Am J Med Genet. 2000;97:164–71.CrossRefPubMed Donnai D, Karmiloff-Smith A. Williams syndrome: from genotype through to the cognitive phenotype. Am J Med Genet. 2000;97:164–71.CrossRefPubMed
39.
go back to reference Meyer-Lindenberg A, Mervis CB, Berman KF. Neural mechanisms in Williams syndrome: a unique window to genetic influences on cognition and behaviour. Nat Rev Neurosci. 2006;7:380–93.CrossRefPubMed Meyer-Lindenberg A, Mervis CB, Berman KF. Neural mechanisms in Williams syndrome: a unique window to genetic influences on cognition and behaviour. Nat Rev Neurosci. 2006;7:380–93.CrossRefPubMed
40.
go back to reference Chin CS. The development of absolute pitch: a theory concerning the roles of music training at an early developmental age and individual cognitive style. Psychol Music. 2003;31:155–71.CrossRef Chin CS. The development of absolute pitch: a theory concerning the roles of music training at an early developmental age and individual cognitive style. Psychol Music. 2003;31:155–71.CrossRef
41.
go back to reference Loui P, Li HC, Hohmann A, Schlaug G. Enhanced cortical connectivity in absolute pitch musicians: a model for local hyperconnectivity. J Cogn Neurosci. 2011;23:1015–26.CrossRefPubMed Loui P, Li HC, Hohmann A, Schlaug G. Enhanced cortical connectivity in absolute pitch musicians: a model for local hyperconnectivity. J Cogn Neurosci. 2011;23:1015–26.CrossRefPubMed
42.
43.
go back to reference Russo FA, Windell DL, Cuddy LL. Learning the “special note”: evidence for a critical period for absolute pitch acquisition. Music Percept. 2003;21:119–27.CrossRef Russo FA, Windell DL, Cuddy LL. Learning the “special note”: evidence for a critical period for absolute pitch acquisition. Music Percept. 2003;21:119–27.CrossRef
44.
go back to reference Dooley K, Deutsch D. Absolute pitch correlates with high performance on interval naming tasks. J Acoust Soc Am. 2011;130:4097–104.CrossRefPubMed Dooley K, Deutsch D. Absolute pitch correlates with high performance on interval naming tasks. J Acoust Soc Am. 2011;130:4097–104.CrossRefPubMed
45.
go back to reference Miyazaki K. Perception of relative pitch with different references: some absolute-pitch listeners can’t tell musical interval names. Percept Psychophys. 1995;57:962–70.CrossRefPubMed Miyazaki K. Perception of relative pitch with different references: some absolute-pitch listeners can’t tell musical interval names. Percept Psychophys. 1995;57:962–70.CrossRefPubMed
46.
go back to reference Miyazaki K, Rakowski A. Recognition of notated melodies by possessors and nonpossessors of absolute pitch. Percept Psychophys. 2002;64:1337–45.CrossRefPubMed Miyazaki K, Rakowski A. Recognition of notated melodies by possessors and nonpossessors of absolute pitch. Percept Psychophys. 2002;64:1337–45.CrossRefPubMed
47.
go back to reference Dohn A, Garza-Villarreal EA, Heaton P, Vuust P. Do musicians with perfect pitch have more autism traits than musicians without perfect pitch? An empirical study. PLoS One. 2012;7:e37961. Dohn A, Garza-Villarreal EA, Heaton P, Vuust P. Do musicians with perfect pitch have more autism traits than musicians without perfect pitch? An empirical study. PLoS One. 2012;7:e37961.
48.
go back to reference Brown WA, Cammuso K, Sachs H, Winklosky B, Mullane J, Bernier R, et al. Autism-related language, personality, and cognition in people with absolute pitch: results of a preliminary study. J Autism Dev Disord. 2003;33:163–7.CrossRefPubMed Brown WA, Cammuso K, Sachs H, Winklosky B, Mullane J, Bernier R, et al. Autism-related language, personality, and cognition in people with absolute pitch: results of a preliminary study. J Autism Dev Disord. 2003;33:163–7.CrossRefPubMed
49.
go back to reference Jäncke L, Langer N, Hänggi J. Diminished whole-brain but enhanced peri-sylvian connectivity in absolute pitch musicians. J Cogn Neurosci. 2012;24:1447–61.CrossRefPubMed Jäncke L, Langer N, Hänggi J. Diminished whole-brain but enhanced peri-sylvian connectivity in absolute pitch musicians. J Cogn Neurosci. 2012;24:1447–61.CrossRefPubMed
50.
go back to reference Courchesne E, Pierce K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol. 2005;15:225–30.CrossRefPubMed Courchesne E, Pierce K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol. 2005;15:225–30.CrossRefPubMed
51.
go back to reference Loui P, Zamm A, Schlaug G. Enhanced functional networks in absolute pitch. NeuroImage. 2012;63:632–40.CrossRefPubMed Loui P, Zamm A, Schlaug G. Enhanced functional networks in absolute pitch. NeuroImage. 2012;63:632–40.CrossRefPubMed
53.
go back to reference Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2006;17:951–61.CrossRefPubMed Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2006;17:951–61.CrossRefPubMed
54.
go back to reference Cherkassky VL, Kana RK, Keller TA, Just MA. Functional connectivity in a baseline resting-state network in autism. NeuroReport. 2006;17:1687–90.CrossRefPubMed Cherkassky VL, Kana RK, Keller TA, Just MA. Functional connectivity in a baseline resting-state network in autism. NeuroReport. 2006;17:1687–90.CrossRefPubMed
55.
go back to reference Keown CL, Shih P, Nair A, Peterson N, Mulvey ME, Müller R-A. Local functional overconnectivity in posterior brain regions is associated with symptom severity in autism spectrum disorders. Cell Rep. 2013;5:567–72.CrossRefPubMedPubMedCentral Keown CL, Shih P, Nair A, Peterson N, Mulvey ME, Müller R-A. Local functional overconnectivity in posterior brain regions is associated with symptom severity in autism spectrum disorders. Cell Rep. 2013;5:567–72.CrossRefPubMedPubMedCentral
56.
go back to reference Lewis JD, Theilmann RJ, Fonov V, Bellec P, Lincoln A, Evans AC, et al. Callosal fiber length and interhemispheric connectivity in adults with autism: brain overgrowth and underconnectivity. Hum Brain Mapp. 2013;34:1685–95.CrossRefPubMed Lewis JD, Theilmann RJ, Fonov V, Bellec P, Lincoln A, Evans AC, et al. Callosal fiber length and interhemispheric connectivity in adults with autism: brain overgrowth and underconnectivity. Hum Brain Mapp. 2013;34:1685–95.CrossRefPubMed
57.
go back to reference Murias M, Webb SJ, Greenson J, Dawson G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry. 2007;62:270–3.CrossRefPubMedPubMedCentral Murias M, Webb SJ, Greenson J, Dawson G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry. 2007;62:270–3.CrossRefPubMedPubMedCentral
58.
59.
go back to reference Mottron L, Dawson M, Soulières I, Hubert B, Burack J. Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception. J Autism Dev Disord. 2006;36:27–43.CrossRefPubMed Mottron L, Dawson M, Soulières I, Hubert B, Burack J. Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception. J Autism Dev Disord. 2006;36:27–43.CrossRefPubMed
60.
go back to reference Mottron L, Dawson M, Soulieres I. Enhanced perception in savant syndrome: patterns, structure and creativity. Philos Trans R Soc Lond B Biol Sci. 2009;364:1385–91.CrossRefPubMedPubMedCentral Mottron L, Dawson M, Soulieres I. Enhanced perception in savant syndrome: patterns, structure and creativity. Philos Trans R Soc Lond B Biol Sci. 2009;364:1385–91.CrossRefPubMedPubMedCentral
61.
go back to reference Baron-Cohen S. Two new theories of autism: hyper-systemising and assortative mating. Arch Dis Child. 2005;91:2–5.CrossRef Baron-Cohen S. Two new theories of autism: hyper-systemising and assortative mating. Arch Dis Child. 2005;91:2–5.CrossRef
62.
63.
64.
go back to reference Loui P, Zamm A, Schlaug G. Absolute pitch and synesthesia: two sides of the same coin? Shared and distinct neural substrates of music listening. ICMPC Proc Ed Catherine Stevens Al Int Conf Music Percept Cogn; 2012. p. 618–23. Loui P, Zamm A, Schlaug G. Absolute pitch and synesthesia: two sides of the same coin? Shared and distinct neural substrates of music listening. ICMPC Proc Ed Catherine Stevens Al Int Conf Music Percept Cogn; 2012. p. 618–23.
65.
go back to reference Rouw R, Scholte HS, Colizoli O. Brain areas involved in synaesthesia: a review. J Neuropsychol. 2011;5:214–42.CrossRefPubMed Rouw R, Scholte HS, Colizoli O. Brain areas involved in synaesthesia: a review. J Neuropsychol. 2011;5:214–42.CrossRefPubMed
66.
go back to reference Volberg G, Karmann A, Birkner S, Greenlee MW. Short- and long-range neural synchrony in grapheme-color synesthesia. J Cogn Neurosci. 2013;25:1148–62.CrossRefPubMed Volberg G, Karmann A, Birkner S, Greenlee MW. Short- and long-range neural synchrony in grapheme-color synesthesia. J Cogn Neurosci. 2013;25:1148–62.CrossRefPubMed
67.
go back to reference Zamm A, Schlaug G, Eagleman DM, Loui P. Pathways to seeing music: enhanced structural connectivity in colored-music synesthesia. NeuroImage. 2013;74:359–66.CrossRefPubMed Zamm A, Schlaug G, Eagleman DM, Loui P. Pathways to seeing music: enhanced structural connectivity in colored-music synesthesia. NeuroImage. 2013;74:359–66.CrossRefPubMed
68.
go back to reference Supekar K, Uddin LQ, Khouzam A, Phillips J, Gaillard WD, Kenworthy LE, et al. Brain hyperconnectivity in children with autism and its links to social deficits. Cell Rep. 2013;5:738–47.CrossRefPubMedPubMedCentral Supekar K, Uddin LQ, Khouzam A, Phillips J, Gaillard WD, Kenworthy LE, et al. Brain hyperconnectivity in children with autism and its links to social deficits. Cell Rep. 2013;5:738–47.CrossRefPubMedPubMedCentral
69.
go back to reference Mottron L, Bouvet L, Bonnel A, Samson F, Burack JA, Dawson M, et al. Veridical mapping in the development of exceptional autistic abilities. Neurosci Biobehav Rev. 2012;37:209–28. Mottron L, Bouvet L, Bonnel A, Samson F, Burack JA, Dawson M, et al. Veridical mapping in the development of exceptional autistic abilities. Neurosci Biobehav Rev. 2012;37:209–28.
70.
go back to reference Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–98.CrossRefPubMed Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–98.CrossRefPubMed
71.
go back to reference Sporns O. Networks of the brain. Cambridge, Massachusetts. London: MIT Press; 2011. Sporns O. Networks of the brain. Cambridge, Massachusetts. London: MIT Press; 2011.
72.
go back to reference Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.CrossRefPubMed Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.CrossRefPubMed
74.
75.
go back to reference Raven J, Raven JC, Court JH. Manual for Raven’s Progressive Matrices and Vocabulary Tests. Section 3: Standard Progressive Matrices: 2000. updated 2004 ed. San Antonio: Pearson Assessment; 2004. Raven J, Raven JC, Court JH. Manual for Raven’s Progressive Matrices and Vocabulary Tests. Section 3: Standard Progressive Matrices: 2000. updated 2004 ed. San Antonio: Pearson Assessment; 2004.
76.
go back to reference Oswald WD. Zahlen-Verbindungs-Test (ZVT) - 3., überarbeitete und neu normerte Auflage. 3rd ed. Göttingen: Hogrefe; 2016. Oswald WD. Zahlen-Verbindungs-Test (ZVT) - 3., überarbeitete und neu normerte Auflage. 3rd ed. Göttingen: Hogrefe; 2016.
77.
go back to reference Gordon EE. Manual for the advanced measures of music audiation. Chicago: GIA Publications; 1989. Gordon EE. Manual for the advanced measures of music audiation. Chicago: GIA Publications; 1989.
78.
go back to reference Müllensiefen D, Gingras B, Musil J, Stewart L. The musicality of non-musicians: an index for assessing musical sophistication in the general population. PLoS One. 2014;9:e89642.CrossRefPubMedPubMedCentral Müllensiefen D, Gingras B, Musil J, Stewart L. The musicality of non-musicians: an index for assessing musical sophistication in the general population. PLoS One. 2014;9:e89642.CrossRefPubMedPubMedCentral
79.
go back to reference Dohn A, Garza-Villarreal EA, Ribe LR, Wallentin M, Vuust P. Musical activity tunes up absolute pitch ability. Music Percept Interdiscip J. 2014;31:359–71.CrossRef Dohn A, Garza-Villarreal EA, Ribe LR, Wallentin M, Vuust P. Musical activity tunes up absolute pitch ability. Music Percept Interdiscip J. 2014;31:359–71.CrossRef
80.
go back to reference Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The Autism-Spectrum Quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J Autism Dev Disord. 2001;31:5–17.CrossRefPubMed Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The Autism-Spectrum Quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J Autism Dev Disord. 2001;31:5–17.CrossRefPubMed
82.
go back to reference Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.CrossRefPubMed Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.CrossRefPubMed
83.
go back to reference Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:1–9.CrossRef Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:1–9.CrossRef
84.
go back to reference Perrin F, Pernier J, Bertrand O, Echallier JF. Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol. 1989;72:184–7.CrossRefPubMed Perrin F, Pernier J, Bertrand O, Echallier JF. Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol. 1989;72:184–7.CrossRefPubMed
85.
go back to reference Vinck M, Battaglia FP, Womelsdorf T, Pennartz C. Improved measures of phase-coupling between spikes and the local field potential. J Comput Neurosci. 2012;33:53–75.CrossRefPubMed Vinck M, Battaglia FP, Womelsdorf T, Pennartz C. Improved measures of phase-coupling between spikes and the local field potential. J Comput Neurosci. 2012;33:53–75.CrossRefPubMed
86.
go back to reference Plonsey R, Heppner DB. Considerations of quasi-stationarity in electrophysiological systems. Bull Math Biophys. 1967;29:657–64.CrossRefPubMed Plonsey R, Heppner DB. Considerations of quasi-stationarity in electrophysiological systems. Bull Math Biophys. 1967;29:657–64.CrossRefPubMed
87.
go back to reference Stinstra JG, Peters MJ. The volume conductor may act as a temporal filter on the ECG and EEG. Med Biol Eng Comput. 1998;36:711–6.CrossRefPubMed Stinstra JG, Peters MJ. The volume conductor may act as a temporal filter on the ECG and EEG. Med Biol Eng Comput. 1998;36:711–6.CrossRefPubMed
88.
go back to reference Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, et al. EEG coherency. Electroencephalogr Clin Neurophysiol. 1997;103:499–515.CrossRefPubMed Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, et al. EEG coherency. Electroencephalogr Clin Neurophysiol. 1997;103:499–515.CrossRefPubMed
89.
go back to reference Stam CJ, Nolte G, Daffertshofer A. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp. 2007;28:1178–93.CrossRefPubMedPubMedCentral Stam CJ, Nolte G, Daffertshofer A. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp. 2007;28:1178–93.CrossRefPubMedPubMedCentral
90.
go back to reference Cohen MX. Analyzing neural time series data. Theory and practice. Cambridge, Massachusetts. London: MIT Press; 2014.CrossRef Cohen MX. Analyzing neural time series data. Theory and practice. Cambridge, Massachusetts. London: MIT Press; 2014.CrossRef
91.
go back to reference Mormann F, Lehnertz K, David P, Elger CE. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys Nonlinear Phenom. 2000;144:358–69.CrossRef Mormann F, Lehnertz K, David P, Elger CE. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys Nonlinear Phenom. 2000;144:358–69.CrossRef
92.
go back to reference Stam C, Jones B, Nolte G, Breakspear M, Scheltens P. Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex. 2006;17:92–9.CrossRefPubMed Stam C, Jones B, Nolte G, Breakspear M, Scheltens P. Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex. 2006;17:92–9.CrossRefPubMed
93.
go back to reference Ortiz E, Stingl K, Münßinger J, Braun C, Preissl H, Belardinelli P. Weighted phase lag index and graph analysis: preliminary investigation of functional connectivity during resting state in children. Comput Math Methods Med. 2012;2012:1–8.CrossRef Ortiz E, Stingl K, Münßinger J, Braun C, Preissl H, Belardinelli P. Weighted phase lag index and graph analysis: preliminary investigation of functional connectivity during resting state in children. Comput Math Methods Med. 2012;2012:1–8.CrossRef
94.
go back to reference Hardmeier M, Hatz F, Bousleiman H, Schindler C, Stam CJ, Fuhr P. Reproducibility of functional connectivity and graph measures based on the phase lag index (PLI) and weighted phase lag index (wPLI) derived from high resolution EEG. PLoS One. 2014;9:e108648.CrossRefPubMedPubMedCentral Hardmeier M, Hatz F, Bousleiman H, Schindler C, Stam CJ, Fuhr P. Reproducibility of functional connectivity and graph measures based on the phase lag index (PLI) and weighted phase lag index (wPLI) derived from high resolution EEG. PLoS One. 2014;9:e108648.CrossRefPubMedPubMedCentral
95.
go back to reference Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage. 2010;52:1059–69.CrossRefPubMed Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage. 2010;52:1059–69.CrossRefPubMed
96.
go back to reference Langer N, Pedroni A, Gianotti LRR, Hänggi J, Knoch D, Jäncke L. Functional brain network efficiency predicts intelligence. Hum Brain Mapp. 2012;33:1393–406.CrossRefPubMed Langer N, Pedroni A, Gianotti LRR, Hänggi J, Knoch D, Jäncke L. Functional brain network efficiency predicts intelligence. Hum Brain Mapp. 2012;33:1393–406.CrossRefPubMed
97.
go back to reference de Haan W, Pijnenburg YA, Strijers RL, van der Made Y, van der Flier WM, Scheltens P, et al. Functional neural network analysis in frontotemporal dementia and Alzheimer’s disease using EEG and graph theory. BMC Neurosci. 2009;10:101.CrossRefPubMedPubMedCentral de Haan W, Pijnenburg YA, Strijers RL, van der Made Y, van der Flier WM, Scheltens P, et al. Functional neural network analysis in frontotemporal dementia and Alzheimer’s disease using EEG and graph theory. BMC Neurosci. 2009;10:101.CrossRefPubMedPubMedCentral
98.
go back to reference Iturria-Medina Y, Sotero RC, Canales-Rodríguez EJ, Alemán-Gómez Y, Melie-García L. Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. NeuroImage. 2008;40:1064–76.CrossRefPubMed Iturria-Medina Y, Sotero RC, Canales-Rodríguez EJ, Alemán-Gómez Y, Melie-García L. Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. NeuroImage. 2008;40:1064–76.CrossRefPubMed
99.
go back to reference Iturria-Medina Y, Canales-Rodríguez EJ, Melie-García L, Valdés-Hernández PA, Martínez-Montes E, Alemán-Gómez Y, et al. Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. NeuroImage. 2007;36:645–60.CrossRefPubMed Iturria-Medina Y, Canales-Rodríguez EJ, Melie-García L, Valdés-Hernández PA, Martínez-Montes E, Alemán-Gómez Y, et al. Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. NeuroImage. 2007;36:645–60.CrossRefPubMed
100.
go back to reference Zhou Y, Yu F, Duong T. Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning. PLoS One. 2014;9:e90405.CrossRefPubMedPubMedCentral Zhou Y, Yu F, Duong T. Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning. PLoS One. 2014;9:e90405.CrossRefPubMedPubMedCentral
101.
go back to reference van Wijk BC, Bernadette CM, Stam CJ, Daffertshofer A, Sporns O. Comparing brain networks of different size and connectivity density using graph theory. PloS One. 2010;5:e13701.CrossRefPubMedPubMedCentral van Wijk BC, Bernadette CM, Stam CJ, Daffertshofer A, Sporns O. Comparing brain networks of different size and connectivity density using graph theory. PloS One. 2010;5:e13701.CrossRefPubMedPubMedCentral
103.
104.
go back to reference van Straaten, E. C. Stam CJ. Structure out of chaos: functional brain network analysis with EEG, MEG, and functional MRI. Eur Neuropsychopharmacol 2013;23:7–18. van Straaten, E. C. Stam CJ. Structure out of chaos: functional brain network analysis with EEG, MEG, and functional MRI. Eur Neuropsychopharmacol 2013;23:7–18.
106.
go back to reference Cohen JR, D’Esposito M. The segregation and integration of distinct brain networks and their relationship to cognition. J Neurosci. 2016;36:12083–94.CrossRefPubMedPubMedCentral Cohen JR, D’Esposito M. The segregation and integration of distinct brain networks and their relationship to cognition. J Neurosci. 2016;36:12083–94.CrossRefPubMedPubMedCentral
107.
go back to reference Watts DJ, Strogatz SH. Collective dynamics of “small-world” networks. Nature. 1998;393:441–2. Watts DJ, Strogatz SH. Collective dynamics of “small-world” networks. Nature. 1998;393:441–2.
108.
go back to reference Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. 2012;13:336–49.CrossRefPubMed Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. 2012;13:336–49.CrossRefPubMed
110.
go back to reference Senkowski D, Schneider TR, Foxe JJ, Engel AK. Crossmodal binding through neural coherence: implications for multisensory processing. Trends Neurosci. 2008;31:401–9.CrossRefPubMed Senkowski D, Schneider TR, Foxe JJ, Engel AK. Crossmodal binding through neural coherence: implications for multisensory processing. Trends Neurosci. 2008;31:401–9.CrossRefPubMed
112.
go back to reference Koessler L, Maillard L, Benhadid A, Vignal JP, Felblinger J, Vespignani H, et al. Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. NeuroImage. 2009;46:64–72.CrossRefPubMed Koessler L, Maillard L, Benhadid A, Vignal JP, Felblinger J, Vespignani H, et al. Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. NeuroImage. 2009;46:64–72.CrossRefPubMed
114.
go back to reference Cantero JL, Atienza M, Madsen JR, Stickgold R. Gamma EEG dynamics in neocortex and hippocampus during human wakefulness and sleep. NeuroImage. 2004;22:1271–80.CrossRefPubMed Cantero JL, Atienza M, Madsen JR, Stickgold R. Gamma EEG dynamics in neocortex and hippocampus during human wakefulness and sleep. NeuroImage. 2004;22:1271–80.CrossRefPubMed
115.
go back to reference Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G. Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci. 1995;15:47–60.CrossRefPubMedPubMedCentral Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G. Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci. 1995;15:47–60.CrossRefPubMedPubMedCentral
116.
go back to reference Miltner WHR, Braun C, Arnold M, Witte H, Taub E. Coherence of gamma-band EEG activity as a basis for associative learning. Nature. 1999;397:434–6.CrossRefPubMed Miltner WHR, Braun C, Arnold M, Witte H, Taub E. Coherence of gamma-band EEG activity as a basis for associative learning. Nature. 1999;397:434–6.CrossRefPubMed
117.
go back to reference Herrmann CS, Fründ I, Lenz D. Human gamma-band activity: a review on cognitive and behavioral correlates and network models. Neurosci Biobehav Rev. 2010;34:981–92.CrossRefPubMed Herrmann CS, Fründ I, Lenz D. Human gamma-band activity: a review on cognitive and behavioral correlates and network models. Neurosci Biobehav Rev. 2010;34:981–92.CrossRefPubMed
118.
go back to reference Elmer S, Rogenmoser L, Kühnis J, Jäncke L. Bridging the gap between perceptual and cognitive perspectives on absolute pitch. J Neurosci. 2015;35:366–71.CrossRefPubMedPubMedCentral Elmer S, Rogenmoser L, Kühnis J, Jäncke L. Bridging the gap between perceptual and cognitive perspectives on absolute pitch. J Neurosci. 2015;35:366–71.CrossRefPubMedPubMedCentral
119.
go back to reference Zatorre RJ, Beckett C. Multiple coding strategies in the retention of musical tones by possessors of absolute pitch. Mem Cogn. 1989;17:582–9.CrossRef Zatorre RJ, Beckett C. Multiple coding strategies in the retention of musical tones by possessors of absolute pitch. Mem Cogn. 1989;17:582–9.CrossRef
120.
go back to reference Schulze K, Gaab N, Schlaug G. Perceiving pitch absolutely: comparing absolute and relative pitch possessors in a pitch memory task. BMC Neurosci. 2009;10:106.CrossRefPubMedPubMedCentral Schulze K, Gaab N, Schlaug G. Perceiving pitch absolutely: comparing absolute and relative pitch possessors in a pitch memory task. BMC Neurosci. 2009;10:106.CrossRefPubMedPubMedCentral
121.
go back to reference Levitin DJ. Absolute memory for musical pitch: evidence from the production of learned melodies. Percept Psychophys. 1994;56:414–23.CrossRefPubMed Levitin DJ. Absolute memory for musical pitch: evidence from the production of learned melodies. Percept Psychophys. 1994;56:414–23.CrossRefPubMed
124.
go back to reference Bhattacharya J, Petsche H. Musicians and the gamma band: a secret affair? NeuroReport. 2001;12:371–4.CrossRefPubMed Bhattacharya J, Petsche H. Musicians and the gamma band: a secret affair? NeuroReport. 2001;12:371–4.CrossRefPubMed
125.
go back to reference Sun L, Grutzner C, Bolte S, Wibral M, Tozman T, Schlitt S, et al. Impaired gamma-band activity during perceptual organization in adults with autism spectrum disorders: evidence for dysfunctional network activity in frontal-posterior cortices. J Neurosci. 2012;32:9563–73.CrossRefPubMedPubMedCentral Sun L, Grutzner C, Bolte S, Wibral M, Tozman T, Schlitt S, et al. Impaired gamma-band activity during perceptual organization in adults with autism spectrum disorders: evidence for dysfunctional network activity in frontal-posterior cortices. J Neurosci. 2012;32:9563–73.CrossRefPubMedPubMedCentral
126.
go back to reference Brown C, Gruber T, Boucher J, Rippon G, Brock J. Gamma abnormalities during perception of illusory figures in autism. Cortex. 2005;41:364–76.CrossRefPubMed Brown C, Gruber T, Boucher J, Rippon G, Brock J. Gamma abnormalities during perception of illusory figures in autism. Cortex. 2005;41:364–76.CrossRefPubMed
127.
go back to reference Herrmann C, Demiralp T. Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol. 2005;116:2719–33.CrossRefPubMed Herrmann C, Demiralp T. Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol. 2005;116:2719–33.CrossRefPubMed
128.
go back to reference Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. 2006;52:155–68.CrossRefPubMed Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. 2006;52:155–68.CrossRefPubMed
130.
go back to reference Grice SJ, Spratling MW, Karmiloff-Smith A, Halit H, Csibra G, de Haan M, et al. Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. NeuroReport. 2001;12:2697.CrossRefPubMed Grice SJ, Spratling MW, Karmiloff-Smith A, Halit H, Csibra G, de Haan M, et al. Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. NeuroReport. 2001;12:2697.CrossRefPubMed
131.
go back to reference Brosnan MJ, Scott FJ, Fox S, Pye J. Gestalt processing in autism: failure to process perceptual relationships and the implications for contextual understanding. J Child Psychol Psychiatry. 2004;45:459–69.CrossRefPubMed Brosnan MJ, Scott FJ, Fox S, Pye J. Gestalt processing in autism: failure to process perceptual relationships and the implications for contextual understanding. J Child Psychol Psychiatry. 2004;45:459–69.CrossRefPubMed
132.
go back to reference Happé F, Frith U. The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord. 2006;36:5–25. Happé F, Frith U. The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord. 2006;36:5–25.
134.
go back to reference Moseley RL, Ypma RJF, Holt RJ, Floris D, Chura LR, Spencer MD, et al. Whole-brain functional hypoconnectivity as an endophenotype of autism in adolescents. NeuroImage Clin. 2015;9:140–52.CrossRefPubMedPubMedCentral Moseley RL, Ypma RJF, Holt RJ, Floris D, Chura LR, Spencer MD, et al. Whole-brain functional hypoconnectivity as an endophenotype of autism in adolescents. NeuroImage Clin. 2015;9:140–52.CrossRefPubMedPubMedCentral
135.
go back to reference Pellicano E, Gibson L, Maybery M, Durkin K, Badcock DR. Abnormal global processing along the dorsal visual pathway in autism: a possible mechanism for weak visuospatial coherence? Neuropsychologia. 2005;43:1044–53.CrossRefPubMed Pellicano E, Gibson L, Maybery M, Durkin K, Badcock DR. Abnormal global processing along the dorsal visual pathway in autism: a possible mechanism for weak visuospatial coherence? Neuropsychologia. 2005;43:1044–53.CrossRefPubMed
136.
go back to reference Lo Y-C, Soong W-T, Gau SS-F, Wu Y-Y, Lai M-C, Yeh F-C, et al. The loss of asymmetry and reduced interhemispheric connectivity in adolescents with autism: a study using diffusion spectrum imaging tractography. Psychiatry Res Neuroimaging. 2011;192:60–6.CrossRef Lo Y-C, Soong W-T, Gau SS-F, Wu Y-Y, Lai M-C, Yeh F-C, et al. The loss of asymmetry and reduced interhemispheric connectivity in adolescents with autism: a study using diffusion spectrum imaging tractography. Psychiatry Res Neuroimaging. 2011;192:60–6.CrossRef
137.
go back to reference Dohn A, Garza-Villarreal EA, Chakravarty MM, Hansen M, Lerch JP, Vuust P. Gray- and white-matter anatomy of absolute pitch possessors. Cereb Cortex. 2015;25:1379–88.CrossRefPubMed Dohn A, Garza-Villarreal EA, Chakravarty MM, Hansen M, Lerch JP, Vuust P. Gray- and white-matter anatomy of absolute pitch possessors. Cereb Cortex. 2015;25:1379–88.CrossRefPubMed
138.
go back to reference Tsiaras V, Simos PG, Rezaie R, Sheth BR, Garyfallidis E, Castillo EM, et al. Extracting biomarkers of autism from MEG resting-state functional connectivity networks. Comput Biol Med. 2011;41:1166–77.CrossRefPubMed Tsiaras V, Simos PG, Rezaie R, Sheth BR, Garyfallidis E, Castillo EM, et al. Extracting biomarkers of autism from MEG resting-state functional connectivity networks. Comput Biol Med. 2011;41:1166–77.CrossRefPubMed
139.
go back to reference Sihvonen AJ, Ripollés P, Särkämö T, Leo V, Rodríguez-Fornells A, Saunavaara J, et al. Tracting the neural basis of music: deficient structural connectivity underlying acquired amusia. Cortex. 2017;97:255–73.CrossRefPubMed Sihvonen AJ, Ripollés P, Särkämö T, Leo V, Rodríguez-Fornells A, Saunavaara J, et al. Tracting the neural basis of music: deficient structural connectivity underlying acquired amusia. Cortex. 2017;97:255–73.CrossRefPubMed
140.
go back to reference Sihvonen AJ, Ripolles P, Leo V, Rodriguez-Fornells A, Soinila S, Sarkamo T. Neural basis of acquired amusia and its recovery after stroke. J Neurosci. 2016;36:8872–81.CrossRefPubMedPubMedCentral Sihvonen AJ, Ripolles P, Leo V, Rodriguez-Fornells A, Soinila S, Sarkamo T. Neural basis of acquired amusia and its recovery after stroke. J Neurosci. 2016;36:8872–81.CrossRefPubMedPubMedCentral
141.
go back to reference Schlaug G, Jäncke L, Huang Y, Staiger JF, Steinmetz H. Increased corpus callosum size in musicians. Neuropsychol Dev Stud Corpus Callosum. 1995;33:1047–55. Schlaug G, Jäncke L, Huang Y, Staiger JF, Steinmetz H. Increased corpus callosum size in musicians. Neuropsychol Dev Stud Corpus Callosum. 1995;33:1047–55.
142.
go back to reference Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullén F. Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci. 2005;8:1148–50.CrossRefPubMed Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullén F. Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci. 2005;8:1148–50.CrossRefPubMed
143.
go back to reference Burunat I, Brattico E, Puoliväli T, Ristaniemi T, Sams M, Toiviainen P. Action in perception: prominent visuo-motor functional symmetry in musicians during music listening. PLoS One. 2015;10:e0138238.CrossRefPubMedPubMedCentral Burunat I, Brattico E, Puoliväli T, Ristaniemi T, Sams M, Toiviainen P. Action in perception: prominent visuo-motor functional symmetry in musicians during music listening. PLoS One. 2015;10:e0138238.CrossRefPubMedPubMedCentral
144.
go back to reference Schmithorst VJ, Wilke M. Differences in white matter architecture between musicians and non-musicians: a diffusion tensor imaging study. Neurosci Lett. 2002;321:57–60.CrossRefPubMed Schmithorst VJ, Wilke M. Differences in white matter architecture between musicians and non-musicians: a diffusion tensor imaging study. Neurosci Lett. 2002;321:57–60.CrossRefPubMed
145.
go back to reference Elmer S, Hänggi J, Jäncke L. Interhemispheric transcallosal connectivity between the left and right planum temporale predicts musicianship, performance in temporal speech processing, and functional specialization. Brain Struct Funct. 2014;221(1):331–44. Elmer S, Hänggi J, Jäncke L. Interhemispheric transcallosal connectivity between the left and right planum temporale predicts musicianship, performance in temporal speech processing, and functional specialization. Brain Struct Funct. 2014;221(1):331–44.
146.
go back to reference Sihvonen AJ, Särkämö T, Ripollés P, Leo V, Saunavaara J, Parkkola R, et al. Functional neural changes associated with acquired amusia across different stages of recovery after stroke. Sci Rep. 2017;7:11390.CrossRefPubMedPubMedCentral Sihvonen AJ, Särkämö T, Ripollés P, Leo V, Saunavaara J, Parkkola R, et al. Functional neural changes associated with acquired amusia across different stages of recovery after stroke. Sci Rep. 2017;7:11390.CrossRefPubMedPubMedCentral
147.
go back to reference Sota S, Hatada S, Honjyo K, Takatsuka T, Honer WG, Morinobu S, et al. Musical disability in children with autism spectrum disorder. Psychiatry Res. 2018;267:354–9.CrossRefPubMed Sota S, Hatada S, Honjyo K, Takatsuka T, Honer WG, Morinobu S, et al. Musical disability in children with autism spectrum disorder. Psychiatry Res. 2018;267:354–9.CrossRefPubMed
148.
go back to reference von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 2000;38:301–13.CrossRef von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 2000;38:301–13.CrossRef
Metadata
Title
Autistic traits, resting-state connectivity, and absolute pitch in professional musicians: shared and distinct neural features
Authors
T. Wenhart
R. A. I. Bethlehem
S. Baron-Cohen
E. Altenmüller
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2019
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-019-0272-6

Other articles of this Issue 1/2019

Molecular Autism 1/2019 Go to the issue